
www.manaraa.com

Wall-bounded turbulence

at high Reynolds numbers

Margit Vallikivi

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Mechanical and Aerospace Engineering

Adviser: Alexander J. Smits

June 2014



www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  3627253
Published by ProQuest LLC (2014).  Copyright in the Dissertation held by the Author.

UMI Number:  3627253



www.manaraa.com

c© Copyright by Margit Vallikivi, 2014.

All Rights Reserved



www.manaraa.com

Abstract

Measurements are reported that give new insight into the behavior of turbulent wall-

bounded flows at high Reynolds number. Turbulent pipe and boundary layer flows

are examined experimentally over a wide range of Reynolds numbers – up to Reτ =

100, 000 (ReD = 6× 106) in pipe flow, and up to Reτ = 73, 000 (Reθ = 235× 103) in

a flat plate zero pressure gradient boundary layer. A Nano-Scale Thermal Anemom-

etry Probe (NSTAP) was developed for very high spatial and temporal resolution

measurements. Sensors with wire lengths 30 and 60 µm were fabricated, tested and

validated in known flows, and then used to obtain single-point measurements at high

Reynolds numbers in pipe and boundary layers.

The mean velocity data together with data from previous studies and extensive

error analysis showed that the von Kármán’s constant in the log-law is κ = 0.40±0.02.

It was shown that the streamwise Reynolds stress exhibits a logarithmic behavior in

the inertial sublayer for Reτ ≥ 20, 000, in both pipes and boundary layers. Variances

as well as higher order even moments were compared for pipes and boundary layers

and it was shown that all even moments have a logarithmic behavior in the inertial

sublayer, suggesting a true scale separation.

Streamwise turbulent spectra showed a clear k−5/3 region for up to two decades in

wavenumber. No k−1 region was found to be present in any of the cases in the pipe

or the boundary layer. The location of the outer spectral peak, associated with very

large scale motions, was found to have only a weak dependence on Reynolds number.

The loci of these peak occur at the same wall-normal distance where the stream-

wise stresses establish a logarithmic behavior and where the amplitude modulation

coefficient has a zero value. This suggests that with Reynolds number increasing to

infinity most of the energy is contained within a diminishing wall-layer in physical

coordinates.
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Chapter 1

Introduction

1.1 Motivation and Goals

Turbulence is an important phenomenon that is present in most fluid flows in nature

as well as in practical applications. In industrial or environmental applications, the

Reynolds number, describing the ratio of inertial to viscous forces, is usually very high

and turbulence introduces large energy losses due to dissipation. Nowadays trans-

portation consumes about 38% and industry 34% of the total energy production in

the USA (as reported in U.S. Energy Information Administration [2013]), so together

these sectors are responsible for about three quarters of total energy consumption.

For aircraft or other high-speed vehicles (where Reynolds number is O (105 − 106))

the viscous drag accounts for about half of total drag and any transport of fluids in

pipelines (i.e. gas, oil, cooling water) introduces significant pressure losses, so that

approximately half of energy used in the transportation of people or fluids is spent

in turbulent dissipation. Therefore, being able to correctly estimate the losses due to

turbulence, together with designing and developing more efficient systems to reduce

these losses will play an important role in the world energy consumption.

In addition to industrial applications, high Reynolds number turbulence is also an

1
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important part of atmospheric and ocean studies. There Reynolds numbers are often

O (107 − 108), making it difficult to develop reliable meteorological tools, climate

models and global warming predictions. Turbulence has been a topic of research for

more than a century but there is still little understanding of the underlying physics

and no general model for describing turbulence at high Reynolds numbers.

Turbulence is often considered to be the most complicated and challenging form

of fluid motion, and by quote from Richard Feynman (or sometimes ascribed to

Albert Einstein or Arnold Sommerfeld) ’Turbulence is the last great unsolved problem

in classical physics’. There is no standard way to define turbulence, but maybe

one of the most comprehensive descriptions is given by Tennekes and Lumley [1972]

who, instead of giving a precise definition, list the most important characteristics

of turbulent flow: a) Irregularity; b) Diffusivity; c) Large Reynolds numbers; d)

Three-dimensional vorticity fluctuations; e) Dissipation at small scales; f) Continuum;

and finally g) Turbulence is a feature of flow, not the fluid. These characteristics

describe well the complexity of turbulence and in order to make any advancements in

understanding of turbulent flows, all of them need to be kept in mind simultaneously.

Turbulent fluid motion, described by the instantaneous Navier-Stokes equations,

is inherently a multi-scale phenomenon where energy is extracted through velocity

gradients at the largest scales of the flow. The energy is then transported down to

smaller and smaller scales until dissipated at the smallest viscous scales (concept of

this forward energy cascade was first introduced by Richardson [1922]). This cascade

process is also highly time-dependent, so in order to study and understand turbulence,

one needs to resolve all these spatial and time scales simultaneously, down to the very

small dissipative scales. As the Reynolds number increases, the separation in scales

increases and resolving all the flow features becomes increasingly more complicated.

In order to directly solve the instantaneous Navier-Stokes equations using Di-

rect Numerical Simulations (DNS) [Moin and Mahesh, 1998], one needs to have the
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computational grid large enough to capture all the large scales and fine enough so

that grid size is smaller than the smallest dissipation scales in the flow. This is

increasingly more computationally expensive with Reynolds number, as increasing

one decade in Reynolds number requires increase in number of gridpoints as ∼ Re3

[Piomelli and Balaras, 2002] and another order of magnitude better temporal resolu-

tion, so the total computational cost increases as ∼ Re4 for wall-bounded flows. Even

with the technological and computational advancements of the last decade, the highest

DNS currenly available are at Re ≈ 2, 000 (in a boundary layer by Sillero et al. [2011]

and Pirozzoli and Bernardini [2013], and in a channel by del Álamo et al. [2004] and

Hoyas and Jiménez [2006]), which is still many orders of magnitude lower than most

industrial and environmental applications.

Because directly solving the Navier-Stokes equations is not feasible at even mod-

erate Reynolds numbers, alternative numerical approaches use Reynolds-Averaged

Navier Stokes (RANS) models [Mellor and Herring, 1973] and Large-Eddy Simula-

tions (LES) Lesieur and Métais [1996]. RANS models are based on averaged equa-

tions describing the mean flow, and the turbulent stresses are modeled using some

type of eddy-viscosity or Reynolds stress model. RANS modeling is fast and reliable

for many industrial applications for standard flows, but RANS performs poorly in

flows and Reynolds numbers where the model coefficients have not been calibrated,

as there is little connection between the models and the underlying physics of the flow.

Bridging the gap between DNS and RANS models, LES has become the preferred ap-

proach in turbulence computations, being less computationally expensive than DNS

but still capturing large scale instantaneous phenomena. In LES-type models, the

large scale turbulent motions are fully resolved and only the small scale turbulence

is modeled using a sub-grid scale (SGS) model for motions smaller than the grid size

[Meneveau and Katz, 2000](assuming that at small scales the turbulence behavior is

universal and independent of the flow geometry). The study and continued develop-

3



www.manaraa.com

ment of SGS models requires accurate high-Reynolds-number data, and therefore a

greater integration of experimental with numerical and theoretical research in turbu-

lence is needed. Sub-grid model approach works relatively well in free shear flows,

but near solid boundaries the grid size needs to be decreased substantially and the

cost of LES becomes comparable to DNS. Alternatively, one could compute most of

the flow using LES and try modeling the near-wall behavior, and so in recent years

developing these wall-models has been an important area of research ([Marusic et al.,

2010b, Piomelli and Balaras, 2002]). In developing near-wall models which represent

correctly high Reynolds number flows, a fundamental knowledge of the turbulence

behavior near walls at high Reynolds numbers is needed.

Numerous reviews on wall-bounded turbulence have been written over the years,

discussing the understanding and advances in the field, notably Cantwell [1981],

Robinson [1991], Marusic et al. [2010c], Smits et al. [2011a], Smits and Marusic [2013].

Some significant progress has been made over the years to understand the behavior

of wall-bounded flows, but these reviews all agree that high Reynolds number ex-

perimental data is needed to validate any of the proposed models, to gain a better

understanding of the dynamics of turbulence and to be able to predict high Reynolds

number flows.

Therefore experimental studies of turbulence are crucial. The advantage of experi-

ments is that all flow phenomena exist in the flow, without approximations. The main

challenges are to actually measure what is of interest to the researcher, and setting up

experiment so that it resembles the flow of interest. Conducting experiments at high

Reynolds numbers typically requires very large and expensive facilities together with

high precision spatially and temporally resolving measurement techniques. To achieve

very high Reynolds numbers, the experimental facilities need to either be scaled up

or, alternatively, the Reynolds number can be increased by changing viscosity. At

the Princeton University Gas Dynamics Laboratory the second approach has been
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chosen and two high Reynolds number facilities have been built, using pressurized air

to increase the Reynolds number. This allows the facilities to be of reasonable size,

but introduces problems in resolving the small-scale turbulence, because the dissipa-

tive scales in these facilities can be very small. Therefore, conventional measurement

techniques cannot be used to resolve these flows.

The main goals of the current dissertation are to:

• to develop and validate a small-scale sensor that provides high spatial and tem-

poral resolution for turbulence measurements;

• to conduct experiments with high spatial and temporal resolution at very high

Reynolds numbers in two representative wall-bounded flows:

– Turbulent pipe flow;

– Turbulent boundary layer flow;

• to analyze the statistics of these wall-bounded flows and determine the trends

in scaling and asymptotic behavior over a large range of Reynolds numbers;

• to study the dynamics of turbulence of these wall-bounded flows using spec-

tral analysis and determine any asymptotic behavior and scaling of the energy

content;

• to compare the behavior of turbulent pipe and boundary layer flows at very

high Reynolds numbers and examine the similarities and differences between

them.

1.2 Wall-bounded flows

Turbulence can broadly be divided into two categories of flows based on the generation

mechanism: wall-bounded flows, where turbulence is generated through the no-slip
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condition at the wall and viscous effects in the region very close to the wall (that

is, boundary layers, pipes and channels); and free shear flows, occurring when fluids

with different momentum interact (i.e. jets, wakes, plumes). In this dissertation, we

concentrate on the behavior of canonical wall-bounded flows only, namely the zero

pressure gradient turbulent boundary layer and fully developed turbulent pipe flow.

In this study, only single-point statistics are studied of the instantaneous velocity

ũ (y, t), where u is the streamwise component of the velocity, y is the wall-normal

location, and t is time. Using Reynolds decomposition, ũ is separated into a time

averaged mean value U = U (y) = ũ (y, t) and a fluctuating value u (y, t) = ũ (y, t)−

U (y), where time averaging is denoted with over-bar ( ). For the purpose of studying

the statistics of the flow, the streamwise Reynolds stress is found as the variance of

the instantaneous velocity u2 = u2 (y) = u2 (y, t), which depends only on the wall-

normal location y for fully developed pipe flow, but depends on both y and x (or a

local Reynolds number) in a boundary layer.

Turbulence is generated when inertial forces cause flow instabilities to grow larger

than the viscous forces which tend to dampen them, so the instabilities grow until

the full flow-field becomes unstable. The ratio between inertial and viscous forces is

defined as the Reynolds number Re = UcLc/ν, where Uc and Lc are some velocity

and length scales and ν is the kinematic viscosity of the fluid. The conventional

Reynolds number in pipe flow is defined as ReD = 〈U〉D
ν

, where D is the diameter of

the pipe and 〈U〉 is the bulk velocity (defined as 〈U〉 = 1
πR2

∫ R

0
U(r)2πr dr, where r

is the radial coordinate and R = D/2 is the pipe radius). In boundary layers, the

usual velocity for defining Reynolds number is the free stream velocity U∞ and usual

length is the momentum thickness θ =
∫∞

0
U(y)
U∞

(

1− U(y)
U∞

)

dy, so that Reθ = U∞θ
ν

is

the conventional Reynolds number for boundary layers.

Near the wall the flow needs to satisfy the no-slip condition, so that ũ(y = 0) = 0,

and the total shear stress is equivalent to the viscous shear stress at the wall. This wall
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shear stress τw = ρν
(

dU(y)
dy

)

y=0
together with kinematic viscosity ν and density of the

fluid ρ are evidently the important parameters close to the wall. From these quantities

we can define appropriate viscous or inner scales near the wall. The velocity scale is

defined as the friction velocity uτ =
√

τw/ρ and the length scale is the viscous length

η = ν/uτ . Using these inner scales, a friction Reynolds number can be defined as

Reτ = δuτ

ν
, where δ is the boundary layer thickness, or in pipe flow the pipe radius.

For boundary layers we define δ = δ99, distance from the wall y at which the mean

velocity equals 99% of the free-stream velocity U∞. This friction Reynolds number

expresses the ratio between the large energetic scales to the small viscous scales in

wall shear flows and can be used for comparing pipe flows and boundary layers, as

well as any other wall-bounded flows.

1.2.1 Scaling of wall-bounded flows

Classically, in turbulent wall-bounded flow, two different scaling parameters are used.

Very close to the wall, the viscous or inner scaling is relevant, where the important

parameters are the viscosity ν and the friction velocity uτ . By scaling with these

parameters, at high enough Reynolds number, self-similarities in velocity profiles are

expected independent of the Reynolds number. Properties scaled with inner variables

are from here on denoted with a superscript ( )+: wall-normal distance y+ = y/η and

mean velocity U+ = U/uτ and streamwise Reynolds stress u2+ = u2/u2τ .

In the outer region of the flow, the behavior is expected to be governed by the

large energy containing scales. The length scale in this region would be the scale

of the largest motions, that is boundary layer thickness δ in external flows and pipe

radius R in internal flows. The velocity scale for outer region is not as well agreed

on. The most conventional is to use uτ again as the velocity scale for both internal

and external flows, where instead of mean velocity U , the deficit velocity U∞ − U or

Ucl − U are described (U∞ denoting the free-stream velocity in boundary layers and
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Ucl the center-line velocity in pipes and channels).

Conventionally, wall-bounded flows are described as consisting of four wall-normal

layers [Pope, 2000]. Very close to the wall is the viscous sublayer, divided into linear

sublayer and buffer layer. In the linear sublayer the viscosity dominates the flow and

the velocity profile can be shown to be linear so that U+ = y+. This region extends

up to y+ ≈ 3. At about y+ > 3 there is a buffer layer where the turbulent shear stress

−ρuv becomes increasingly important compared to the viscous shear stress ρν dU
dy
, and

the total shear stress is a sum of these two. For y+ > 30 the total shear stress consists

mainly of turbulent shear stress, and from here on the outer scaling is expected to

be relevant. This is the usual expectation, however resent results, including results

presented in this dissertation, indicate that the viscous effects stay important even

up to y+ = O (103). The inner scaling is expected to be valid from the wall until

y/δ ≈ 0.1. The region where both of the scalings are simultaneously valid is called

an overlap region, or turbulent wall region, and as the Reynolds number increases

this region is also increasing (in terms of y+). Conventionally this overlap region is

considered to be equivalent to an inertial sublayer, indicating that neither viscous nor

energetic scales are relevant. The region far away from the wall, where y/δ & 0.1, is

called the outer boundary layer or wake region and here the flow is fully governed by

the outer scales. It is important to note that this distinction of regions is only true if

the Reynolds number is high enough.

Compared to this conventional approach, where only linear sublayer, buffer layer,

inertial sublayer and the outer layer are identified, George and Castillo [1997] in-

troduced another region for turbulent boundary layers, the so-called mesolayer. This

region, first described by Long and Chen [1981], is the inner part of the overlap region

at 30 . y+ . 300 and describes the region where the viscous stresses are negligible,

but in which viscosity acts directly on the turbulence scales producing the Reynolds

stresses. According to this description, the overlap region is divided into a mesolayer
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and an inertial sublayer, where the latter only starts at y+ ≈ 300 and extends until

the outer edge of the overlap region. The mesolayer was also introduced later in

pipe flows by Wosnik et al. [2000]. Figure 1.1 shows the different regions in turbu-

lent boundary layer as described by George and Castillo [1997], where δ+ = Reτ . A

similar picture can be drawn for pipe flow, with the difference that the wake region

would also be denoted as the turbulent core. The limits of these regions (which could

be different for pipes and boundary layers) mentioned above are approximate and are

still up for debate. The existence and extents of these regions in boundary layers and

pipes will be discussed in current work.

1.3 Hot-wire anemometry

There are many different techniques available for measuring instantaneous velocities

in turbulent flows, but hot-wire anemometry has been the method of choice, primarily

because it gives spatially and temporally well resolved data of velocity fluctuations

[Bruun, 1995]. A conventional hot-wire sensor consists of a thin freestanding wire of

length ℓ and diameter d mounted between two electrically conducting prongs, with

typical length of 1 to 0.5 mm and a typical diameter of 5 to 2.5 µm. The probe as-

sembly is inserted into the flow, the filament is electrically heated above the ambient

temperature, and typically a feedback circuit is used to keep the sensor temperature

(and resistance) constant (known as a Constant Temperature Anemometer, or CTA).

As the fluid flows over the probe, the convective heat transfer from the wire to the

fluid cools the wire, and so the current increases to keep the probe resistance con-

stant. The output voltage can therefore be related to the fluid velocity through an

empirical calibration function [Bruun, 1995, Perry and Morrison, 1971]. As a result

an instantaneous velocity measurement at sampling frequency fs at a single point in

space can be obtained.
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Figure 1.1: Schematic showing various regions and layers in boundary layer flow,
adopted from George and Castillo [1997].
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1.3.1 Spatial resolution

A major drawback of hot-wire anemometry, however, is the limited spatial resolution

of the probe whereby eddies smaller than the wire length are masked in the signal. One

of the first investigations of this phenomenon was performed by Wyngaard [1968], who

studied the effects of spatial filtering in homogeneous isotropic turbulence by using a

model spectrum to describe the high-wavenumber contributions to the signal. Later,

Citriniti and George [1997] demonstrated experimentally and analytically that when

spanwise wavelengths smaller than the wire length are filtered, the resulting measured

one-dimensional spectrum will show filtering effects over the entire wavenumber range.

These studies give important insights into the effects of spatial filtering, but the

effects are difficult to estimate quantitatively in the study of turbulent wall-bounded

flows where the spectra are not known a priori. This problem is particularly evident

at high Reynolds numbers, where in many cases the smallest scales of turbulence are

much smaller than the wire length. Ligrani and Bradshaw [1987a] suggested that hot-

wire probes will produce reliable turbulence statistics when the wire length in viscous

units is ℓ+ ≤ 20, where ℓ+ = ℓuτ/ν. Hutchins et al. [2009] provide an empirical

correlation to help estimate the filtering effects (at y+ = 15) as a function of Reτ =

δuτ/ν, ℓ
+, and ℓ/δ.

Based on the attached eddy hypothesis combined with the near-wall peak cor-

rection, Smits et al. [2011b] developed a correction for streamwise turbulent stress

u+2 in wall-bounded flows to account for spatial filtering effects at more distant wall-

normal positions. Their analysis revealed that outside the near-wall region the spa-

tial filtering effect scales inversely with the distance from the wall, in contrast to the

commonly assumed scaling with the viscous length scale. Therefore the correction

depends on both the wire length ℓ+ as well as the wall-normal distance y+, so that

∆u2+/u2+m =M (ℓ+) f (y+) where m denotes the measured value and ∆ the difference

between the true and measured values. They showed that this correction worked

11



www.manaraa.com

equally well in various wall-bounded flows for at least up to ℓ+ ≈ 150.

1.3.2 End-conduction effects

Any correction scheme must rely to some extent on known or predictable behavior,

a bias that needs to be avoided when investigating new phenomena. There is a clear

need for an instrument that has sufficient spatial and temporal resolution to measure

turbulent fluctuations accurately over the entire spectrum, especially at high Reynolds

numbers. The length of the sensor is the principal factor in setting its spatial resolu-

tion (that is, the smallest size eddy that can be resolved), and the mass of the sensor

is the principal factor in determining its temporal resolution (how quickly can it re-

spond to a change in velocity magnitude) [Smits et al., 2011b]. Therefore, to improve

the sensor’s spatial and temporal response, it is necessary to reduce its length and

diameter. However, the length-to-diameter ratio ℓ/d must be kept large, of O(200),

to minimize end-conduction effects [Hultmark et al., 2011, Klewicki and Falco, 1990,

Ligrani and Bradshaw, 1987a, Perry et al., 1979]. End conduction is the process by

which heat from the wire is conducted into the prongs that support the sensor, and

it introduces frequency-dependent effects that are clearly undesirable in making ac-

curate measurements. Therefore, it is not possible to reduce the probe size by simply

reducing its length, since the diameter must be reduced proportionally, and there

are limits on the smallest diameter that is achievable using conventional hot-wire

manufacturing techniques.

One of the goals of this dissertation is to develop and implement a sensor of reduced

size so that the sensor has significantly improved spatial and temporal resolution

without introducing significant end-conduction effects. To achieve this goal, we turn

to nano-fabrication in order to be able to decrease all dimensions of the sensing

element at the same time. Development of these novel miniature hot-wire sensors is

described in Chapter 2.
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1.4 Contributions by the author

Chapter 2 describes the development, fabrication and validation of a Nano-

Scale Thermal Anemometry Probe (NSTAP). Most of the chapter is based on a

peer-reviewed article Vallikivi and Smits [2014], where all the writing, analysis

and experiments were done by me. In addition, results from two previously

published peer-reviewed articles were used in the validation section. Namely

Section 2.5.3, which used data from Bailey et al. [2010], and Section 2.5.3 from

Vallikivi et al. [2011], where data were taken collaboratively by Marcus Hult-

mark and myself.

Chapter 3 describes experiments in turbulent pipe flow obtained in the Prince-

ton/ONR Superpipe facility. The NSTAP measurements were conducted by

Marcus Hultmark and me collaboratively, and the Pitot measurements were

taken by myself. This chapter consists of two peer-reviewed journal publica-

tions. Section 3.3 includes parts from Bailey et al. [2014], where all the data

were taken by me and the analysis was done in parallel by myself and Sean

Bailey. The writing of the paper, partially presented in this dissertation, was

mostly done by Sean Bailey and me. Chapter 3.4 consists of material from

Hultmark et al. [2012], where data was taken and analysis done in collaborative

manner by me and M. Hultmark and writing was done by Marcus Hultmark,

Sean Bailey and me.

Chapter 4 compares smooth and rough-wall turbulent pipe flow. It is based

on Hultmark et al. [2013], where the measurements and analysis were done by

me and Marcus Hultmark collaboratively, and the writing was done by Marcus

Hultmark, Sean Bailey and me.

Chapter 5 describe experiments in a zero pressure gradient boundary layer

obtained in the High Reynolds Number Test Facility (HRTF) at Princeton and
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will be a basis of a paper. The experiment was set up by Marcus Hultmark,

who also took the Pitot data and some preliminary NSTAP data. The NSTAP

measurements, as well as all the analysis and writing were done by me.

Chapter 6 uses pipe and boundary layer data to analyze similarities and dif-

ferences in higher order moments in both flows. All the analysis and writing

was been done by me.

Chapter 7 describes the analysis of the spectral behavior of turbulent wall-

bounded flows. Here all the analysis and writing were done by me. This Chapter

will be the basis of a paper to be submitted to a peer-reviewed journal.
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Chapter 2

A Nano-Scale Thermal

Anemometry Probe

2.1 Introduction

There is a pressing need for probes that can measure velocity fluctuations with suf-

ficiently small spatial resolution and sufficiently high frequency response, as was dis-

cussed in Chapter 1. Here, we describe a new sensor, manufactured using deep reac-

tive ion etching (DRIE) together with other microelectromechanical systems (MEMS)

fabrication techniques, to address the shortcomings of current sensing methods in

measuring high Reynolds number flows.

A number of authors have tried to address the problem of spatial resolution (de-

scribed in Chapter 1.3.1) by using conventional manufacturing techniques to create

hot-wire probes with smaller sensing elements. Willmarth and Sharma [1984] con-

structed hot-wires as short as 25 µm but their results suffered from end-conduction

effects because ℓ/d ≪ 200. Ligrani and Bradshaw [1987b] used the smallest of the

available wires, with diameter of 0.625 µm, but with the restriction of ℓ/d > 200 the

smallest wire lengths were limited to 125 µm.
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Integrated circuit fabrication and MEMS fabrication techniques have introduced

new possibilities for developing anemometry sensors with considerably reduced phys-

ical sizes. Löfdahl et al. [1992] developed single and dual component velocity sen-

sors, which gave results that compared well to conventional hot-wire probes, and

Ebefors et al. [1998] introduced micro-joints for fabricating 3D poly-silicon hot-wires.

Unfortunately, the largest dimensions of the sensing elements of these probes offered

only a slight improvement in spatial resolution compared to conventional techniques.

Jiang et al. [1994] used MEMS fabrication techniques to manufacture a poly-silicon

thermal anemometry probe with a geometry similar to conventional hot-wires. These

probes were a great improvement in terms of spatial dimensions, with the smallest

having a length of 10 µm, but end-conduction was again an important limitation. This

was also a problem for the multi-component hot-wire probes fabricated by Chen et al.

[2003], with sensor dimensions 50 × 6 × 2.7 µm. Moreover, these sensors were not

suitable for conventional turbulence measurements, being fixed at one wall-normal lo-

cation. Wang et al. [2007] had a different approach, using a micro-cantilever structure

for measuring air flow, but these sensors were even larger than conventional hot-wire

anemometers.

I have been working at Princeton University Gas Dynamics Laboratory to de-

velop a Nano-Scale Thermal Anemometry Probe (NSTAP) that will have improved

spatial and temporal resolution for small-scale turbulence measurements. NSTAP is

a measurement device similar to conventional hot-wire anemometer, having an or-

der of magnitude smaller sensing element compared to current commercial hot-wire

anemometers, and it is manufactured using MEMS fabrication techniques.
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2.2 History of the NSTAP

The development of a Nano-Scale Thermal Anemometry Probe (NSTAP) was origi-

nally started by Kunkel et al. [2006], proposing to develop a miniature sensor similar

to hot-wire sensor but with smaller dimensions to improve spatial and temporal resolu-

tion. The proposed fabrication process was based on standard semiconductor process-

ing techniques and they succeeded in fabricating a freestanding nano-scale platinum

filament (with dimensions of 60×2×0.1µm) suspended between two current-carrying

contacts. Kunkel et al. [2006] analyzed quantitatively the current-voltage character-

istics and static response and showed that the performance of this new sensor was

suitable for using in a similar configuration as hot-wires in order to conduct instan-

taneous velocity measurements.

Hot-wire anemometry is an intrusive method, therefore to avoid altering the flow

behavior, the probes need to have an aerodynamic shape. The sensor developed by

Kunkel et al. [2006] had significant amount of silicon protruding alongside of the fil-

ament and the probes were not suitable for quantitative analysis (Figure 2.1(A)). To

address that problem, Hill [Senior Thesis,2007] developed a precise laser microma-

chining routine for ablating some of the protruding silicon (Figure 2.1(B)). Further

improvements of the fabrication process were conducted by Bailey et al. [2008] and

Meyer [Senior Thesis,2008], who manufactured a few sensors with freestanding fila-

ments (Figure 2.1(C)), which were a great improvement compared to Kunkel et al.

[2006]. However, the issue of aerodynamic interference of protruding silicon with the

flow still remained, which affected proper turbulence measurements.

Our first successful effort to fabricate an NSTAP that could be used in turbu-

lence measurements was reported by Bailey et al. [2010], shown in Figure 2.1(D). I

improved the microfabrication process flow and laser ablation was used to shape the

3D silicon support structure. Although this design gave results that agreed well with

conventional hot-wires in grid turbulence, the laser ablation method could only yield
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Figure 2.1: Scanning Electron Microscope images of development of NSTAPs
over 8 years. (A) Kunkel et al. [2006]; (B) Hill [Senior Thesis,2007]; (C) Meyer
[Senior Thesis,2008]; (D)Bailey et al. [2010]; (E) Vallikivi [2010]; (F) Vallikivi et al.
[2011].
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a bulky support structure of limited precision, and all the sensors suffered from sig-

nificant aerodynamic interference due to the silicon support. In addition, the laser

ablation was difficult to control, and consequently there was a very low yield of less

than 5%. Similar problems persisted in the next attempt, described in Vallikivi [2010],

where the sensor dimensions were decreased down to 30×0.3×0.1µm, but the silicon

support was still disturbing the flow (as seen in Figure 2.1(E)).

To overcome these limitations, I developed a new approach using a deep reactive

ion etching (DRIE) together with reactive ion etching lag (RIE lag) process and other

improved fabrication steps to make possible high-yield, low-cost fabrication of durable

small-scale thermal anemometry sensors. Additionally, the design of the sensors has

been significantly changed to achieve an aerodynamic shape and minimize blockage

effects behind the sensor. By modifying and improving the fabrication process, yields

were increased from less than 5% to about 75%, and the fabrication time was at the

same time decreased by at least 4 times. As an extra benefit, due to its small size,

NSTAP can be positioned very close to the wall, down to 15 µm from the surface,

to allow good velocity resolution in the near wall region (though the uncertainty of

near-wall measurements increases due to calibration difficulties at lower velocities).

First results using the DRIE were reported by Vallikivi et al. [2011] (Figure 2.1(F)),

where 60µm sensors were compared with conventional hot wires (as described in

Chapter 2.5.3). These NSTAP sensors have shown excellent agreement with con-

ventional experimental techniques without any noticeable end-conduction effects, or

aerodynamic interference.

2.3 Design and Fabrication Process

The conceptual shape of the NSTAP is shown in Figure 2.2. The sensor is designed to

have a free-standing platinum sensor filament with two electrically conductive prongs
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Figure 2.2: 3D model of the Nano-Scale Thermal Anemometry Probe.

and a supporting silicon structure. The supporting structure needs to be aerodynam-

ically shaped, so that supports have a minimal size in front and a slow increase in size

downstream. This requirement is crucial for making accurate measurements, and in-

troduces a great challenge in microfabrication because most of the current fabrication

techniques are designed for two-dimensional designs or layer stacking.

The fabrication of NSTAP sensors can be divided into three main stages: I) wafer

fabrication; II) 3D shaping; III) wire release.

2.3.1 Stage I: Wafer fabrication

Integrated circuit fabrication techniques permit batch fabrication processes, which

can optimize the fabrication flow as well as lower the cost per device. The fabrication

starts with a 100 mm diameter 500–550 µm thick double-side polished prime grade

silicon wafer, with low resistivity of 1-10 Ωcm.
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The processing steps in Stage I are shown in Figure 2.3(a)-2.3(f), and they are:

a) Clean double side polished silicon wafer,

b) Silicon oxide deposition,

c) Photo-resist deposition,

d) Optical photo-lithography,

e) Metal deposition,

f) Metal lift-off.

First, a 500 nm thick layer of SiO2 is deposited on the top side of the wafer

using plasma-enhanced chemical vapor deposition (PECVD) (Figure 2.3(b)). The

deposition is done in a Plasma-Therm 790 system using 2% SiH4/N2 at 35 sccm and

N2O at 69 sccm (with chamber temperature 250◦C, pressure 400 mTorr, and power

25 W, resulting in a deposition rate of 20.6 nm/min). This oxide layer carries three

main purposes: it provides an insulating layer between the silicon substrate and the

metal film; it acts as an etch stop in Stage II; and it performs an important role in

supporting the metal wire during the processing steps prior to the final wire release

at the end of Stage III.

Optical photo-lithography is then used to define the pattern of the sensors. A

Heidelberg DWL66 laser writer (with resolution down to 1 µm) is used for writing

a customized mask on a soda lime chrome coated mask plate. This mask (Mask 1)

with 12 × 17 patterns is fabricated in-house and can be used multiple times. A single

pattern is shown in Figure 2.4(a). The overall size of the patterned sensor is 2 × 4

mm with a sensing element in front having dimensions 1 × 60 µm or 1 × 30 µm.

For optical lithography, the wafer is first spin-coated with a thin layer of hexa-

methyl-di-silazane (HMDS) to improve adhesion and then spin-coated with a 500 nm
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Figure 2.3: NSTAP fabrication process. Left: cross-section A-B; right: cross-section
C-D with cross-sections shown in Figure 2.2. Steps: a) silicon wafer; b) silicon oxide
deposition; c) photoresist; d) photo-lithography (Mask 1); e) metal deposition; f)
metal lift-off; g) photoresist; h) photo-lithography (Mask 2); i) DRIE lag etching; j)
RIE etching; k) wet BOE etching.
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thick layer of AZ1505 photoresist (Figure 2.3(c)). The sample with resist is then soft-

baked on a hot plate for one minute at 95◦C. The wafer is exposed to UV light using

Karl Suss MA6 optical aligner with vacuum contact to assure the highest precision.

The exposed sample is then developed for 60 seconds and hard-baked on a hot plate

for one minute at 95◦C (Figure 2.3(d)).

Once the pattern is defined in the photoresist, we can proceed to metal deposition.

To obtain high uniformity and low stress, a sputtering process is used to deposit

the metal (employing Angstrom Sputterer system). First a 100 Ålayer of titanium

is deposited as an adhesive layer between the oxide and the main metal. Then a

1000 Ålayer of platinum is deposited, and it is this layer that defines the final thickness

of the sensing element (Figure 2.3(e)). Platinum is chosen as the sensor material due

to its relatively low bulk thermal conductivity, and also because it has been extensively

characterized and used in the conventional hot-wire industry. After the lift-off process,

where the excess metal is removed, a wafer with ∼200 NSTAP patterns is available,

with a yield close to 100%.

2.3.2 Stage II: 3D shaping

To obtain measurements, the probe will be inserted into the flow, and therefore it is

important to avoid aerodynamic interference, so that the supporting structure of the

sensor does not affect the flow over the sensor. Here we describe a novel technique

for three-dimensional etching of silicon, using DRIE together with the RIE lag effect,

to achieve desired 3D structure.

DRIE is a powerful new MEMS fabrication technique for dry etching high aspect

ratio trenches. One important aspect of this technique is known as RIE lag, that is,

the fact that the etch rate depends on the size of the initial mask opening [Chung,

2004, Jansen et al., 1997]. RIE lag often introduces depth variations in the etched

patterns and has proven to be a notorious problem in micro-machining community.
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a)

b)

Figure 2.4: Photo-lithography mask patterns. a) Mask 1: Metal pattern for the
standard 60 µm and 30 µm NSTAP, with a zoomed view of the front end. b) Mask 2:
Mask design for the DRIE process. All dimensions are in µm.
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However, RIE lag can be used constructively to achieve a 3D structure if the mask is

designed accordingly. Here we use this RIE lag effect to construct an aerodynamically

shaped support structure for NSTAP. The process flow is illustrated in Figure 2.5.

First, regular optical lithography is used to define the pattern with varying size open-

ings (Mask 2, Figure 2.5(a)). The sample is then etched using the anisotropic Bosch

process, resulting in trenches of varying depth due to RIE lag (Figure 2.5(b)). Once

the approximate desired depth is achieved, an isotropic plasma etch is used to remove

the sidewalls between the trenches (Figure 2.5(c)). As a final step, more Bosch etch-

ing is performed to achieve the desired depth and to smooth out the steps between

different height surfaces. The sample has now been formed into a three-dimensional

structure defined by a two-dimensional mask (Figure 2.5(d)). Similar fabrication tech-

nique has been suggested by some authors [Chou and Najafi, 2002, Rao et al., 2004,

Xiong et al., 2010], each having a slightly different approach based on the application.

To integrate this RIE lag etching into NSTAP fabrication, a customized mask is

required. For the current application, a very deep etching is needed, as we also intend

to cut individual sensors out of the 500 µm silicon substrate using DRIE while shaping

the support structure using the same process. The variation of depth with trench size

was determined experimentally, as shown in Figure 2.6, and a curve fit to the data

was used for the mask design process. This simple power law fit, together with some

iterative testing, produced a complex optical mask design (Mask 2), with a single

pattern shown in Figure 2.4(b). The mask consists of several important elements.

First, the gradual increase in width of the openings in the region where the sensor

support was sloped. Next, in order to support the walls between the etched trenches,

some bounding and extra supporting walls are added. Also, the area between the

two protruding prongs is designed to be open to decrease blockage effects in the

flow. Finally, a wide opening is left around the whole structure, which permitted the

individual sensors to be cut out of the wafer.
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c) d)
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Figure 2.5: Slope formation using DRIE together with RIE lag. a) Mask design and
photo-lithography; b) anisotropic etch, defining the surface; c) isotropic etch, sidewall
removal d) anisotropic etch, smoothing the surface.
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Figure 2.6: DRIE etch lag for high aspect ratio trenches: etch depth dependance on
the mask opening width.
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The process flow for 3D shaping is shown in Figure 2.3(g-i). The wafer fabricated

in Stage I is first vapor primed by covering the surface with a monolayer of HMDS

for promoting adhesion. The back side of the wafer (without metal) is then covered

with a 4000 nm thick layer of AZ4330 photoresist followed by a soft bake at 110◦C

(Figure 2.3(g)). The wafer with the metal pattern is aligned with Mask 2 in Karl

Suss MJB4 mask aligner system using infrared light for back side alignment, and then

exposed in hard contact. The exposed substrate is developed for one minute, followed

by one minute hard bake at 95◦C (Figure 2.3(h)). Next, the sample is etched in a

SAMCO RIE800iPB system using the described DRIE lag process. First, a 200 cycle

Bosch process is used to etch through about half the full wafer thickness. Then the

sample is mounted with high vacuum grease onto a carrier wafer. This carrier will

allow us to etch through the full wafer, leaving all individual sensors on the carrier

without damaging the chuck in the chamber. The remains of the photoresist are then

removed with an oxygen clean to avoid overheating due to decreased thermal contact

between the chuck and the substrate. Next, two series of 150 cycle Bosch processes

are performed, with a relatively short 3 minute isotropic etch in between. Because the

cooling of the substrate is extremely important to avoid surface impurities during the

etching and provide smooth surface, a 20 second cooling step is added to each Bosch

cycle. Finally, when all silicon has been etched from the wide open areas, the etch is

automatically stopped on the oxide layer underneath the silicon. Individual sensors

with the desired aerodynamic form can then be picked off the carrier (Figure 2.3(i)).

The complete 3D shape of a fully fabricated sensor can be seen in the environmental

scanning electron microscope (ESEM) images presented in Figure 2.7. The conductive

platinum layer and the sensing element is shown in views B, E and F, while the sloped

silicon surface can be clearly seen from the bottom views C and D. The zoomed-in

views D and E show the diminishing thickness and smooth shape of the front end of

the sensor, as well as a slightly more gradual thickness change in the back part.
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2.3.3 Stage III: Probe release

For the support of the fragile metal sensor filament, in Stage II a thin silicon layer is

left underneath the wire (Figure 2.3(i)). This silicon needs to be removed carefully

from every sensor individually. First the sensor is fixed to a glass slide using some

crystal-bond mounting adhesive, with metal side facing the glass. The glass slides

with sensors can then be inserted into a RIE chamber for a short isotropic SF6 dry

etch, until the bridge of silicon is removed from underneath the wire. The sensors are

then released from slides using acetone, and at this point only the silicon oxide layer

is left as a support for the platinum wire (Figure 2.3(j)).

The design of the NSTAP sensors accommodates simple integration into regu-

lar hot-wire anemometry systems. For example, the prongs of conventional hot-wire

probes can be used to connect the NSTAP to standard hot-wire anemometer elec-

tronics. The prongs are simply soldered onto the NSTAP under an inspection micro-

scope, securing electrical and mechanical contact with a minimum amount of solder,

as shown in Figure 2.7(A). This soldering step must be performed while the filament

still has support from the SiO2 layer, otherwise the mechanical stress and vibration

during the soldering process can fracture the freestanding sensor element.

After NSTAP has been soldered onto prongs, a final short etch in buffered oxide

etch (BOE) is performed, which removes the oxide layer as well as the thin layer

of titanium from beneath the wire (Figure 2.3k). This final etch is followed by a

deionized water rinse, immediately followed by an acetone soak. It is crucial to avoid

the surface tension forces damaging the wire, and therefore BOE with surfactant must

be used and the liquids cannot be allowed to dry between any of the steps. Due to

the low surface tension of acetone, NSTAP with freestanding filament can be removed

from the acetone and dried without damaging the wire. At this point, a functioning

NSTAP sensor with a freestanding 60 or 30 × 1 × 0.1 µm platinum sensor filament,

shown in Figure 2.7F, has been fabricated, mounted to conventional hot-wire prongs,
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Figure 2.7: A photo and Environmental Scanning Electron Microscope images of a
30 µm NSTAP. A) Probe mounted onto prongs (photo). B) Full sensor from above;
C) Full sensor from below; D) Close view of the sensor from below; E) Close view of
the sensor from above; F) Zoom-in on the freestanding wire.

and is ready for characterization and testing. Once well calibrated and established,

the full fabrication process can take from about two weeks to a month resulting a

batch of about 100 sensors.

2.4 Characterization

2.4.1 Sensor resistance

The fabrication methods described above allow for considerable flexibility in the de-

sign of the sensors. The dimensions of the sensor filament can be easily changed by

changing the design of one mask or by varying the metal layer thickness. Many sensors
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Figure 2.8: Measured resistivity over bulk resistivity for different platinum film thick-
nesses.

with lengths 60 and 30 µm and 100 nm thickness have been studied extensively and

used here for characterization. Additionally sensors with thicknesses ranging from 50

to 140 nm were also made and investigated, as well as sensors with sensor lengths of

90, 120 and 150 µm.

The resistance of the sensor is one of the most important parameters in the op-

eration of the probe, because it determines the operating conditions in the electrical

circuit and the response of the sensor. Therefore it is crucial to know the value

accurately and be able to predict it to some reasonable extent when designing new

sensors. As the metal thickness gets smaller, the resistivity of a thin film, ρexp, be-

gins to deviate from the bulk resistivity, which for platinum is ρbulk = 1.06 × 10−7

Ω·m. The resistivity of platinum wires of different thicknesses was determined by

measuring the total resistance R0, subtracting the resistance of the supports RS, and

using the relation ρ = (R0 −RS)
A
ℓ
where A is the cross-sectional area and ℓ the sen-

sor length. The results are shown in Figure 2.8, with accompanying error estimates

(based on statistical error together with approximately 20% uncertainty in ρ/ρbulk).
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It can be seen that the resistivity increases with decreasing thickness, as expected, as

the effects of varying grain size, deposition method and metal quality start playing

an increasingly more important role. The resistances of fabricated sensors will always

have some variation, due to slight non-uniformity in thicknesses and widths across

the wafer. In the fabrication process described here, the thickness of the metal layer

varied up to about 20%, and the sensor width varied about 25% across the wafer.

The total resistance of a typical 60 µm sensor was around 150 Ω, and about 220 Ω

for a 30 µm sensor. The thermal coefficient of resistance, χ, was measured in still air

in constant current mode and was found to be 0.0016 K−1. During the operation of

the NSTAPs, the temperature overheat α was kept between 0.5 and 0.75, resulting

in heating the filament up to about 450-510 K. Here α = (T −T0)/T0, where T is the

operating temperature of the filament and T0 is the temperature of the ambient fluid.

It was found that at higher temperature overheat α > 0.8 (resulting in the operating

temperature above 540 K), the platinum filament resistance started to drift over time

due to the overheating and probe damage was also observed. Therefore all sensors

were kept below 510 K and in that case no change in resistance was noted during

operation. A half hour annealing in the flow was still done before operating the sensor

for the first time, to assure a constant resistance; the change in resistance, if any, was

always below 1% and occurred within the first 5 minutes of operation. Throughout

numerous experiments the resistance remained constant, even if the sensor was used

for many months, and failure of sensors was usually caused by poor handling or dust

particles hitting the sensor in the flow.

2.4.2 Temporal response

By manufacturing very small sensors such as NSTAP, we can alleviate the problem

of spatial resolution in measurements of turbulence. We also need to achieve ad-

equate frequency response. In our applications, hot-wire probes and NSTAPs are
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Figure 2.9: Temporal response of the NSTAP at different ambient air pressures. a)
Square-wave response; b) attenuation in signal with frequency (Bode diagram), where
0 dB indicates unity gain.

powered by the same anemometer system, a Dantec Streamware Constant Temper-

ature Anemometer, which provides a very low noise to signal ratio (much less than

O(10−3)). The response of the system can be described approximately as a second or-

der system with a cut-off frequency fc and a damping factor ξ [Perry and Morrison,

1971], and an optimal response in terms of a flat frequency response occurs with

ξ ≈ 0.4.

To determine fc and ξ, a square wave input to the system can be used, and a typical

response of a 60 µm NSTAP is shown as a blue curve in Figure 2.9(a), with frequency

response of 195 kHz. The cut-off frequency can be estimated as fc = 1/1.3τw, where
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τw is the time during which the signal has first decayed to 3% of its maximum value,

and the damping factor ξ can be found by comparing to a theoretical response from

a second order system. NSTAPs are especially useful for measurements in very high

Reynolds number facilities, such as those at Princeton where high Reynolds numbers

are achieved using compressed air [Jiménez et al., 2010, Zagarola and Smits, 1998].

Therefore the frequency response of an NSTAP at three different ambient air pressures

pair = [1; 5; 55] was investigated at a flow velocity U = 10 m/s and at temperature

overheat of 0.73. We found that with increasing pressure, the frequency response

estimated from impulse response increased from fc =195, to 275, to 360 kHz, and the

corresponding damping factors become ξ =0.55, 0.31, and 0.21. Hence the system

becomes less stable at higher pressures (due to higher heat transfer rates at higher

pressures) while the frequency response is increasing. It must be noted that the true

response could be significantly lower for NSTAP as well as conventional wires, based

on recent study by N. Hutchins (private communication), being as low as 40 kHz for

NSTAP at 5 atm pressures. But even this much lower response would result in well-

resolved data, only loosing < 0.5% of the energy in the flow (assuming the response

to be 40 kHz at 5 atm and 10 m/s). Using fc and ξ, the gain function for velocity

fluctuations (the Bode diagram) can be estimated (assuming a second-order system),

as shown in Figure 2.9(b). For comparison, a typical conventional hot-wire response

at U =10 m/s is also shown, with fc = 50 kHz and ξ = 0.45, as taken from the study

by Ashok et al. [2012]. The NSTAP clearly captures a wider range of frequencies and

this range is even more expanded at higher pressures.
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Figure 2.10: NSTAP and hot-wire calibration. Open symbols: pre-calibration, filled
symbols: post-calibration.

2.5 Testing and validation

2.5.1 Calibration

The gain of the system (that is, its sensitivity) is found by performing a calibration.

The NSTAP can be operated using a standard anemometer system, here a Dantec

CTA with 1:1 bridge and an external resistor. To calibrate the system, the sensor is

inserted into a flow of known velocity, and the output voltage is recorded over the

velocity range that will be encountered in the actual experiment. To help determine

the sensitivity (the slope of the voltage–velocity relationship, dE/ dU), a fourth-order

polynomial was fitted to the data (further details of the procedure can be found in

Vallikivi et al. [2011]). Calibrations are performed before and after each experiment

to monitor any possible drift in sensitivity, and temperature correction proposed by

Hultmark and Smits [2010] was used to correct for the temperature changes in the

flow (correction being usually below 0.2◦C).

Two calibration curves obtained using a typical 60 µm NSTAP are shown in
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Figure 2.11: NSTAP and hot-wire sensitivity (dE/dU). Open symbols: pre-
calibration, filled symbols: post-calibration.

Figure 2.10, together with a similar calibration obtained for a conventional hot-wire

probe (platinum-10% rhodium Wollaston wire with diameter 2.5 µm and length 0.5

mm). The voltage output for the NSTAP is smaller than that of the hot-wire because

of the smaller size of the sensor, but both sensors follow a very similar curve well

described by the polynomial fit. The agreement between the pre- and post-calibration

is excellent for both sensors (below 0.2% for U > 2 m/s), indicating almost negligible

changes in the cold resistance of the sensor, which we have found to be typical for

NSTAPs.

Conventional hot-wires are known to be very accurate method for low-velocity

measurements, due to the increasing sensitivity at lower velocities, as can be seen from

Figure 2.11. The NSTAP shows a similar behavior, however, at very low velocities

the sensitivity flattens out. This is due to the miniature size of the sensor, as for

low velocities the heat transfer is dominated by natural convection instead of forced

convection (a similar behavior was noted by Ligrani and Bradshaw [1987b] while using

miniature hot-wires).
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Figure 2.12: Calibration curves of NSTAP (60 µm) operation at different ambient air
pressures pair.

Figure 2.12 shows how the calibration of a 60 µm NSTAP changes with ambient

pressure pair. As the pressure increases, the output voltage increases, making the

signal less noisy, and due to the higher density of the ambient air the performance

of the sensors at low velocities is improved. Experiments have also been conducted

with NSTAPs in a different facility at Max Plank Institute of Dynamics and Self-

Organization, where pressurized SF6 is used as the ambient fluid [Bewley et al., 2014],

and the NSTAPs have been shown to operate equally well under those conditions.

Some example calibration curves in SF6 at different pressures pSF6
are shown in

Figure 2.13. Even though the range of velocities covered in these calibrations is

smaller than for the calibrations in air, it is evident that the NSTAP behaves well

and could be used for velocity measurements in SF6.
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.

2.5.2 Pitch and yaw sensitivity

To evaluate the performance of the NSTAP further, the response to a change in flow

angle was studied, namely the dependence on pitch angle θ and yaw angle ψ. Pitch is

defined as rotation around y-axis and yaw around z-axis according to the coordinate

system shown in Figure 2.2.

Hot-wire sensors are usually considered to be relatively insensitive to pitch angle

changes, as long as the angles are small enough Bruun [1995]. One would expect

to see a similar trend for an NSTAP if the response of the sensor is not affected by

aerodynamic interference caused by the supporting silicon structure. Additionally, the

NSTAP sensor filament is a ribbon with a high aspect ratio, rather than a circular

sensor as used in a hot-wire probe. The comparisons between probes are shown

in Figure 2.14, where the “effective” velocity Ue (the velocity as indicated by the

sensor) has been normalized by the mean velocity Um measured at θ = 0◦, that is,

the “true” velocity. For large pitch angles, the effects of pitch on the NSTAP response

is significant, having an error up to 5%. It must be noted that for many applications,
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Figure 2.14: Pitch angle dependence of an NSTAP and a hot-wire probe (HW).

this angle is usually much smaller. If only pitch angles in the range θ = ±10◦ are

considered, the hot-wire probe and NSTAP show a very similar response, both having

deviations well below 1%.

The hot-wire response to yaw angle changes is often assumed to follow a simple

cosine cooling law, where the effective velocity is given by Ue = Um cosψ and ψ is the

yaw angle [Bradshaw, 1971, Bruun, 1995]. The response of the NSTAP is compared

to that of a typical hot-wire probe in Figure 2.15 and both probes follow the cosine

law closely. To illustrate the cosine behavior better, the same data are plotted against

cosψ in Figure 2.15(b). For small angles both sensors agree well with each other, as

well as with the expected response. For large angles, the NSTAP deviates somewhat

from the cosψ line, which is reasonable considering that the supporting structure will

start to protrude ahead of the sensor. Again, for most applications, angles larger than

10◦ are rarely encountered, and for −10◦ < ψ < 10◦ the deviation for both sensors

from the cosine cooling law is less than 1%.
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Figure 2.16: Measured streamwise wavenumber spectra in grid turbulence normalized
by the Kolmogorov scales in (a) standard and (b) pre-multiplied form. Results for ©,
60 µm NSTAP; �, 0.5 mm probe; and △, 1.5 mm probe are shown for U∞ = 10 m/s
(hollow symbols), U∞ = 20 m/s (gray symbols) and U∞ = 30 m/s (filled symbols)
shown.

2.5.3 Turbulence measurements

Grid turbulence

The first turbulence measurements with NSTAPs were performed by Bailey et al.

[2010], who used the original design, shown in Figure 2.1(D). Measurements were

performed in grid-generated turbulence and compared to conventional hot-wire probes

with a range of sensor lengths. The results showed a good agreement between all the

probes.
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The wavenumber spectra Φuu(k1) are shown in Figure 2.16, where the stream-

wise wavenumber is taken as k1 = 2πf/ 〈U1〉 and f is the frequency. Figure 2.16(a)

illustrates that the NSTAP provides virtually the same overall response as the con-

ventional probes, even at low wavenumbers where end conduction effects would be

expected to be important. However, the wavenumber distribution of turbulent kinetic

energy is better illustrated by plotting the power spectra in pre-multiplied form as in

Figure 2.16(b). When viewed in this form, the reduced spectral response of the larger

probes becomes much more readily apparent. At low velocity the 0.06 mm NSTAP

and 0.5 mm hot wire probe are in excellent agreement and both measure an energy

level that is slightly higher than that of the 1.5 mm probe. In grid turbulence, the

relevant length scale for spatial filtering effects can be argued to be the Kolmogorov

length scale ηK =
(

ν3

ε

)1/4

, where ε is the average rate of dissipation of turbulent

kinetic energy. As velocity increases, the Kolmogorov length scale decreases, ℓ/ηK

increases, and we see that the energy measured by even the 0.5 mm probe decrease

relative to the NSTAP. This illustrates the importance of minimizing filtering effects

in order to acquire reliable measurement results.

Pipe flow

Vallikivi et al. [2011] described an experiment in fully developed turbulent pipe flow,

conducted in part to help validate NSTAP behavior in wall bounded turbulent flow.

Measurements of the streamwise component of velocity were performed using 60µm

NSTAP and compared with the data obtained using a conventional hot wire probe

with ℓw = 0.4 mm and diameter of 2.5µm.

Mean flow as well as turbulent fluctuations were shown to have a very good agree-

ment between the different sensors. Figure 2.17(a) shows distributions of the stream-

wise variance u+2 = u2/u2τ . It can be seen that in the outer flow for all three Reynolds

numbers the NSTAP data agree remarkably well with the hot-wire data, and an inner
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Figure 2.17: Streamwise turbulence intensity profiles in turbulent pipe flow a) uncor-
rected and b) corrected for spatial filtering; measured with NSTAP (filled symbols)
and conventional hot-wire (hollow symbols) at ◦, ReD = 45000; △, ReD = 80000; �,
ReD = 150000.
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Figure 2.18: Pre-multiplied energy spectra of the streamwise velocity signal in pipe
flow in outer region at y+ = 1000; measured with NSTAP (filled symbols) and
conventional hot-wire (hollow symbols) at ◦, ReD = 45000; △, ReD = 80000; �,
ReD = 150000.

peak in intensity at y+ ≈ 15 is seen in each profile. However, discrepancies due to

spatial filtering are observed in the near wall region, increasing with Reynolds num-

ber, that is, for y+ < 15 at ReD = 45, 000, y+ < 25 at ReD = 80, 000 and y+ < 50

at ReD = 150, 000. For the NSTAPs, 1.0 ≤ ℓ+ ≤ 3.1, and the profiles agree in every

respect at each Reynolds number (as can be seen in Figure 2.17(a)), demonstrating

that no significant spatial filtering effects are present. However, for the hot-wire data,

7 ≤ l+w ≤ 20.6, and some filtering is evident even at the lowest Reynolds number in

the region y+ < 15.

To account for the effects of spatial filtering, the correction function proposed by

Smits et al. [2011b] was used (described in Chapter 1.3.1. In Figure 2.17(a) the turbu-

lence intensity distributions are shown without this correction, and in Figure 2.17(b)

they are shown with this correction applied. The corrected hot wire and NSTAP data

collapse onto a single curve for each Reynolds number, even in near-wall region where

spatial filtering effects were significant prior to correction. As the correction method
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proposed by Smits et al. [2011b] has been validated at similar Reynolds numbers, the

collapse of the profiles shows the correct behavior of the sensors.

The frequency spectra Φuu were also studied for both NSTAP and conventional

hot wire probes, with local mean velocity as the convection velocity. In Figure 2.18

the premultiplied one-dimensional streamwise energy spectra Φuuk1 are shown for

y+ = 1000, where the spatial filtering effects are small and the hot-wire and NSTAP

show excellent agreement.

2.6 End-conduction effects

In order to finish the evaluation of the NSTAP performance, the end-conduction

effects need to also be taken into account. Chapter 1.3.2 discussed the importance of

end-conduction effects on the sensor, introducing an empirical criterion ℓ/d > 200 for

avoiding such effects for conventional hot-wires. Recently a more rigorous analysis

was done by Hultmark et al. [2011], who demonstrated that end-conduction effects of

a regular hot-wire reduce with Reynolds number such that the sensing length of a hot-

wire probe can be halved with a 15-fold increase in the Reynolds number based on the

sensor width. Hultmark et al. [2011] defined a new non-dimensional end-conduction

parameter Γ and show that a for conventional hot-wires, Γ > 14 is necessary to avoid

any attenuation in the turbulent fluctuations.

This criterion was derived for a circular cross-section hot-wire filament, but in the

case of NSTAP the filament is more like a ribbon, with a rectangular cross-section.

Therefore the parameter characterizing end-conduction effects needs to be re-defined

to allow for arbitrary cross-sections, and we call this new parameter Λ.
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2.6.1 Theoretical Analysis

We derive a new end-conduction criterion following Betchov [1948] and Hultmark et al.

[2011]. The temperature distribution in a hot-wire for steady state can be expressed

as

Resistive heating = Heat convection to the ambient+ Heat conduction to prongs,

(2.6.1)

r(x)I2 = Psh (T (x)− T0) +
dq(x)

dx
, (2.6.2)

where

q(x) = −kwAc
dT (x)

dx
. (2.6.3)

Here, x is the coordinate along the sensor measured from the center of the sensor,

r(x) is the resistance per unit length at the sensor temperature T (x), I is the current

through the sensor, T0 is the ambient temperature, Ps is the perimeter of the cross-

section, Ac is the area of the cross-section, kw is the thermal conductivity of the sensor

and h is the convective heat transfer coefficient.

Using the relationship

r(x) = r0 [1 + χ (T (x)− T0)] , (2.6.4)

where χ is the thermal coefficient of resistance of the sensor material and r0 is resis-

tance per unit length at ambient temperature, Equation 2.6.2 can be rewritten as a

differential equation

r(x)I2 =
Psh

χr0
(r − r0)−

kwAc

χr0

d2r(x)

dx2
. (2.6.5)

Using the boundary conditions r′(0) = 0 and r(ℓ/2) = r0 (assuming that stubs are
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Figure 2.19: Sketch of a conventional hot-wire. T (x) is the temperature distribution
of the wire, ℓ the wire length and ℓ∗ the cold length.

perfect heat sinks), we obtain

r(x) =
r0A

A− I2

[

1− I2

A

cosh x
ℓ∗

cosh ℓ/2
ℓ∗

]

, (2.6.6)

A =
Psh

χr0
, (2.6.7)

ℓ∗ =

√

kwAc

χr0(A− I2)
. (2.6.8)

that expresses the resistance distribution along the sensor filament. The parameter

ℓ∗ was introduced by Betchov [1948] as the “cold length,” which denotes the length

of the wire that is affected by end-conduction to the prongs, as shown in Figure 2.19.

If this cold length is much smaller than the total wire length, the sensor could be

considered free of end-conduction effects.

In order to estimate the severity of end-conduction effects for a sensor, we first

estimate the heat transfer through conduction to be

qcond = −kwAc
dT (x)
dx

= kwAc

χr0

dr(x)
dx

(2.6.9)

= kwAcr0I2

ℓ∗χr0(A−I2)

[

sinh x
ℓ∗

cosh
ℓ/2
ℓ∗

]

. (2.6.10)
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Estimating this heat transfer at the stubs gives

qstub = qcond|x=ℓ/2 =
1

ℓ∗
kwAcr0I

2

χr0(A− I2)

[

tanh
ℓ/2

ℓ∗

]

. (2.6.11)

Assuming that the half length of the sensor ℓ/2 >> ℓ∗ (at least 3 times bigger),

tanh ℓ/2
ℓ∗

≈ 1, and using the expression for the cold length, qstub becomes

qstub = ℓ∗r0I
2. (2.6.12)

The total heat transfer out of the filament is

qtot = RI2 = ℓγr0I
2, (2.6.13)

where R is the total resistance of the filament, r0ℓ is total cold resistance, and γ = R
r0ℓ

is the resistance overheat ratio. Comparing the total heat flux to the heat lost to

stubs, we can write

qtot
2qstub

=
ℓγr0I

2

2ℓ∗r0I2
=

ℓγ

2ℓ∗
= Λ (2.6.14)

where Λ is the desired non-dimensional parameter describing the end-conduction ef-

fects. It must be noted that the definition of Λ is slightly different from parameter

Γ defined by Hultmark et al. [2011], differing by a factor 2, so that Λ = Γ/2. This

difference comes from the fact that Hultmark et al. [2011] compared total heat flux

to heat lost to one stub, but does not change any qualitative conclusions made by

Hultmark et al. [2011], just changes the numerical value of the constant.

This new parameter Λ can now be rewritten, using the definition of the cold

length, as

Λ =
1

2
ℓγ

√

hPs

kwγAc

. (2.6.15)

The convective heat transfer coefficient can be rewritten in terms of the Nusselt
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number as h = Nukf/ℓc, where kf is thermal conductivity of the ambient fluid and

ℓc is a characteristic length in direction of a growing boundary layer. Expressing the

surface area of the filament as As = Psℓ, the general form of the non-dimensional

coefficient becomes

Λ =
1

2

√

ℓ

ℓc

As

Ac

kf
kw
γNu. (2.6.16)

Circular sensor filament

From this general form of Λ any type of cross-section filaments can be analyzed. For a

circular cross-section with diameter d and characteristic length ℓc = d this parameter

becomes

Λ =
ℓ

d

√

kf
kw
γNu, (2.6.17)

similar to expression for Γ introduced by Hultmark et al. [2011]. For this cylindrical

filament case Nu can be estimated as Nu = (0.35 + 0.56Re0.52c )Pr0.3, as shown in

Fand [1965].

Rectangular sensor filament

For a rectangular cross-section, as for an NSTAP with ℓc = ℓw,

Λ =
1

2

√

ℓ

ℓw

2(ℓh + ℓw)ℓ

ℓhℓw

kf
kw
γNu ≈

√

1

2

ℓ2

ℓwℓh

kf
kw
γNu. (2.6.18)

where ℓw and ℓh are respectively the width and the height of the filament, and ℓw >>

ℓh for the second approximation. For a plate type of geometry, the Nusselt number

can be approximated as Nu = 0.664Pr0.33Re0.5c [Incropera et al., 2011].

2.6.2 Validation

The new end-conduction parameter Λ depends on the geometry of the sensor but also

on many other parameters. Because the NSTAP is primarily designed to be used in
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pressurized facilities, we will analyze the behavior of Λ for the NSTAP at different

ambient pressures. Figure 2.20 shows that the value of Λ depends on the ambient air

pressure, for a hot-wire as well as for a NSTAP with different geometry (with ℓ=30

or 60 µm, and ℓw = 1 or 2 µm). The figure demonstrates well the increase in Λ as

the ambient pressure (and therefore the characteristic Reynolds number) increases.

It also shows that for any NSTAP geometry used, the criteria of Λ > 7 is difficult to

meet by only increasing the pressure.

The experiments described in Chapter 2.5.3 were all made using an NSTAP

with dimensions 60 × 2 × 0.1µm, which is shown as the blue dashed line in Fig-

ure 2.20. No evidence of end-conduction effects were observed for the measurements

by Bailey et al. [2010] in grid turbulence nor by Vallikivi et al. [2011] in turbulent pipe

flow, both measured in air at atmospheric conditions, with free stream velocities above

4 m/s. The hot wires used in these studies had 5 < Λ < 15, and agreed well with each

other, while for the NSTAP these conditions corresponded to Λ > 1.7. Though the

NSTAP value was much lower than for the hot wires, an excellent agreement between

probes was seen, suggesting that there were no significant end-conduction effects in

either case. To be on the safe side, we choose Λ > 2.5 as our condition for avoiding

end-conduction effects. This is much lower than Λ > 7 proposed by Hultmark et al.

[2011], suggesting that the criteria on Λ may depend on the sensor geometry, or that

the theoretical analysis might be oversimplified.

From Figure 2.20 it is clear that a 30 µm NSTAP, even with 1 µm width, will

not satisfy Λ > 7 in any reasonable range of pressure. But if we use assume that for

NSTAP Λ > 2.5 is sufficient, we can see that for a 30×1×0.1µm sensor the criteria is

fulfilled at 7 atm and for a 30×2×0.1µm filament at 16 atm. To verify this proposal,

in Figure 2.21 we compare two sets of data at the same flow conditions measured with

60 µm and 30 µm NSTAPs having a 2 µm width (marked as symbols in Figure 2.20).

The agreement between two data sets for y+ > 100 is very good and well within
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experimental error. These data were taken in turbulent pipe flow (described in detail

in Chapter 3) at ReD = 4.0 × 106 and at 46 atm pressure. The mean velocity on

the sensor varied from 5 to 12 m/s for y+ > 100 where the two sensors agree well.

It must be noted that to avoid any confusion due to possible spatial filtering effects,

the correction suggested by Smits et al. [2011b] and described in Chapter 1.3.1 was

applied in Figure 2.21(b). The 60 µm sensor has Λ > 7, whereas the 30 µm sensor

only has Λ = 2.75 at 10 m/s (and even lower at lower velocities). The results present

a convincing argument that for an NSTAP sensor Λ > 2.5 is a sufficient criterion for

avoiding end-conduction effects. This corresponds to ℓ/d = 85 for a cylindrical wire,

being surprisingly lower than reported minimum ℓ/d for hot-wire sensors, suggesting

some other geometrical effects could be effecting the response. A study incorporating

wider range of sensor geometries and flow conditions is needed to make any final

conclusions.

2.7 Conclusion

We have described the design and fabrication process of a novel Nano-Scale Ther-

mal Anemometry Probe (NSTAP), which can resolve velocity fluctuations down to

30µm with a frequency response that can exceed 300 kHz based on square wave re-

sponse. The small size of NSTAP allows it to measure velocities very close to the

wall, down to 15 µm. The complete fabrication process includes the formation of a

three-dimensional silicon structure using deep reactive ion etching combined with the

RIE lag effect. The 3D structure is shaped to reduce aerodynamic interference, but

the particular technique demonstrated here can easily be adapted to form many other

3D silicon structures for other applications.

Many sensors with different dimensions have been fabricated and tested in var-

ious flows, and have been shown to have similar behavior as conventional hot-wire
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Figure 2.20: Parameter Λ dependance on ambient pressure and sensor geometrical
parameters, at 10 m/s flow velocity. (*) - Hot-wire with ℓ/d = 200; (blue) - NSTAP
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Figure 2.21: Comparison between 60 micron NSTAP (◦) and 30 micron NSTAP (�)
in smooth-walled pipe flow at p = 46 atm and 10 m/s bulk velocity, (a) uncorrected
and (b) following correction for spatial filtering effects.
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anemometers. The NSTAP can be operated in different gases over a wide range of

ambient pressures, with minimal drift and simple calibration techniques. In addition,

the probes are relatively insensitive to small pitch angles (±10◦), and over the same

range of angles the sensitivity to yaw follows a cosine behavior, which follows the

response observed for conventional hot-wires.

An expression was derived for a parameter Λ = 1
2

√

ℓ
ℓc

As

Ac

kf
kw
γNu, characterizing

the end-conduction effects for a filament with an arbitrary cross-section. The exper-

imental validation showed that fulfilling a criteria of Λ > 2.5 is sufficient to avoid

end-conduction effects for an NSTAP.

The NSTAP have been shown to give excellent agreement with conventional hot

wire anemometers in isotropic homogeneous turbulence as well as in shear flows, in

cases where no spatial and temporal filtering occurs. At the same time the sensors

provide an improved spatial and temporal resolution compared to any other technique

available. Therefore NSTAP appears to provide a powerful new tool for accurate

turbulence measurements, where spatial and temporal resolution are vital.
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Chapter 3

Turbulent pipe flow

3.1 Introduction

When the flow is hydraulically smooth such that the smallest eddy scales are much

larger than the roughness elements, classical scaling arguments indicate that the flow

scaling can be divided into two regions, an “inner region” and an “outer region”

[Millikan, 1938, Perry and Abell, 1975], as described in Chapter 1. In the inner

region, where viscosity is important, the characteristic velocity scale is the friction

velocity uτ and the characteristic length scale is the viscous length scale, η = ν/uτ .

In the outer region, where viscosity is not important, the characteristic velocity scale

remains the friction velocity uτ (at least at a sufficiently high Reynolds number, see

Zagarola and Smits [1998]), but the characteristic length scale is now the shear layer

thickness, which in a pipe is its radius R.

3.1.1 Mean flow

Classical scaling works very well for the mean velocity profile in fully-developed

smooth pipe flow, as comprehensively demonstrated by Zagarola and Smits [1998] and

McKeon et al. [2004a], among others [Marusic et al., 2010c, Smits et al., 2011a]. The
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near-wall region follows a universal behavior when scaled using inner scaling. In par-

ticular, McKeon et al. [2004a] concluded that at sufficiently high Reynolds numbers

there exists a viscous sublayer for y+ ≤ 5, where the inner-scaled velocity U+ = U/uτ

varies linearly with y+, a buffer region for 5 ≤ y+ ≤ 50, and a power-law-like region

for 50 ≤ y+ ≤ 600 described by U+ = Cy+
γ
, where C and γ are Reynolds-number

independent constants. Here, y+ = yuτ/ν, where y is the distance from the wall. This

power-law region has a clear resemblance to the mesolayer introduced for pipe flow

by Wosnik et al. [2000], who argued that in this region there is insufficient scale sepa-

ration between the energy and dissipation ranges for inertially dominated turbulence

to exist. Beyond this power-law region, McKeon et al. [2004a] noted that a “true”

logarithmic region appears, from approximately y+ = 600 up to about y/R = 0.12,

and then a universal wake region in outer coordinates fills out the remainder of the

profile.

We can express the mean velocity variation (assuming that the convection terms

are negligible) in the so-called overlap region in either inner scaling according to,

U+ =
1

κ
ln y+ + B, (3.1.1)

or in outer scaling as in:

U+
cl − U+ = −1

κ
ln
y

R
+ B∗. (3.1.2)

This result has classically been found through similarity hypotheses [von Kármán,

1930], mixing length concepts [Prandtl, 1925], asymptotic matching [Millikan, 1938],

dimensional analysis [c.f. Buschmann and Gad-el Hak, 2009] or, more recently, high

Reynolds number asymptotic analysis [George and Castillo, 1997, Jiménez and Moser,

2007]. Here, U is the mean streamwise velocity, and U+ = U/uτ . Furthermore,

U+
cl = Ucl/uτ , where Ucl is the mean velocity on the centerline and R is the radius of
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the pipe. Using Equation (3.1.1) and (3.1.2), we can also write

U+
cl =

1

κ
lnR+ +B +B∗. (3.1.3)

The von Kármán constant κ, and the additive constants B and B∗, were origi-

nally thought to be universal. But since von Kármán [1930] proposed a logarithmic

region of mean flow, there has been a remarkable variation in the values of these

constants. The reviews of experimental data by Coles [1956] and Coles and Hirst

[1968] led to the values of κ = 0.40 to 0.41 being generally accepted, and the values

κ = 0.41, B = 5.2 and B∗ = 0.65 became commonly cited [Bradshaw and Huang,

1995, Huffman and Bradshaw, 1972, Schlichting and Gersten, 2000]. More recent ex-

periments, however, have suggested that these constants could depend on the flow

under consideration [Nagib and Chauhan, 2008], or that the convection terms present

in boundary layers act to alter the velocity profile compared to fully developed chan-

nel and pipe flows where they are strictly zero, appearing as a change in the con-

stants [George, 2007]. For example, in turbulent boundary layers Österlund et al.

[2000] found κ = 0.384, B = 4.17 and B∗ = 3.6, while measurements in channel

flows made by Zanoun et al. [2003] indicated κ = 0.37 and B = 3.7. In pipe flow

McKeon et al. [2004a] found κ = 0.421, B = 5.60 and B∗ = 1.20, whereas Monty

[2005] reported κ = 0.386 in a different pipe facility (and at lower Reynolds number).

Zanoun et al. [2003] pointed out that values of κ from 0.33 to 0.43 and B from 3.5

to 6.1 have been proposed, with no apparent convergence in time. A more recent

review, together with a historical perspective on logarithmic mean flow scaling and

the associated constants, is provided by Örlü et al. [2010].

Many of these estimates of κ were based on regression fits to Equation (3.1.1)

or its derivative, which can easily lead to bias errors, especially when the lower

and upper limits of the logarithmic region are still being debated (see, for exam-
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ple, Marusic et al. [2010c] and Smits et al. [2011a]). To avoid such errors for pipe

flow, additional means for obtaining κ were employed by Zagarola and Smits [1998]

and McKeon et al. [2004a]. One way, based on integrating Equation (3.1.1) from the

wall to the centerline and assuming complete similarity of the mean velocity profile,

uses the Reynolds number dependence of the friction factor λ = 8(uτ/U)
2, where U

is the area weighted bulk velocity (for details see Zagarola and Smits [1998]). With

ReD = 2UR/ν, the friction law gives

1/λ1/2 =
1

2κ
√
2 log e

log
(

ReDλ
1/2

)

+ C2, (3.1.4)

where C2 is an empirical constant. For pipe flow, this approach has the advantage

that uτ can be found with high precision by measuring the pressure drop along the

pipe, and so Equation (3.1.4) can give an alternate estimate of κ.

Despite these precautions, the pipe flow results of Zagarola and Smits [1998] and

McKeon et al. [2004a] have been disputed, including arguments that the Pitot profiles

required a turbulence correction [Nagib and Chauhan, 2008, Perry et al., 2001]. Such

disputes could not be addressed without complementary thermal anemometry mea-

surements made in the same facility, which have since been obtained. In Chapter 3.3,

we aim to use these data to establish the best estimate for the value of von Kármán’s

constant for the flow in a hydraulically smooth pipe, together with its uncertainty

levels.

The upper and lower limits of the logarithmic region in pipe flow are still under

discussion. As noted, Zagarola and Smits [1998] and McKeon et al. [2004a] observed

a lower bound close to y+ = 600, while Hultmark et al. [2012] observed a lower limit

closer to 800 using data presented here. Recently, Marusic et al. [2013] evaluated high

Reynolds number measurements from boundary layer and pipe flow experiments,

including those of Hultmark et al. [2012], and suggested based on several previous
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studies that a conservative lower limit for fitting data could be y+ = 3Re0.5τ (the

middle of the log region). This conclusion can only hold at high Reynolds numbers, at

least for pipe flow, since no logarithmic region was observed by McKeon et al. [2004a]

for Reτ < 5000. As to the upper limit, Zagarola and Smits [1998] suggested 0.07R,

whereas McKeon et al. [2004a] indicated an upper bound of 0.12R and Marusic et al.

[2013] used 0.15R for a mix of pipe and boundary layer flows.

3.1.2 Reynolds stresses

Despite these ambiguities, it appears that classical scaling describes the behavior of

the mean velocity well. In contrast, it is not so clear that the turbulent stresses

follow a similar scaling, especially with regard to the streamwise component u2.

Within the near wall region, for example, the distribution of u2+ = u2/u2τ shows

a distinct peak at y+ ≈ 15, the so-called “inner peak”. However, the variation of

this peak with Reynolds number is currently a topic of debate, with recent stud-

ies arriving at contradictory conclusions. In pipe flow, for instance, Ng et al. [2011]

found that the magnitude of the inner peak increased with Reynolds number, whereas

Hultmark et al. [2010], Vallikivi et al. [2011] and Hultmark et al. [2012] each found

that its magnitude was constant with Reynolds number, although its precise value is

not clear. For channel flows and boundary layer flows the picture seems clearer in

that there is a general consensus that the peak value increases with Reynolds number

[DeGraaff and Eaton, 2000, Hutchins and Marusic, 2007, Jiménez and Hoyas, 2008,

Klewicki and Falco, 1990, Marusic and Kunkel, 2003]. It is worth noting, however,

that its rate of increase has not yet been established with any certainty, where, for

example Hutchins and Marusic [2007] proposed an increase in peak u2+ of 2.22 per

decade in Reτ , while Marusic et al. [2010a] suggest a possible value as low as 0.90 per

decade. The question is important in that it informs our understanding of inner/outer

layer interactions. Marusic et al. [2010b] suggested that the increase in the near-wall
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peak for boundary layers occurs through a superposition and modulation coupling

between the inner and outer regions of wall turbulence, and given that boundary lay-

ers, channel flows, and pipe flows have different geometrical constraints it would not

be surprising to see differences in the structure and organization of the outer layer

turbulence, and its interaction with the near-wall motions.

Further from the wall, some studies have reported the appearance of a second peak

(the so-called “outer peak”) at high Reynolds number. For instance, Morrison et al.

[2004] observed its appearance in pipe flows for Reτ ≥ 8560. These measurements cov-

ered the range 1.8×103 ≤ Reτ < 101×103, and used hot-wires with 14.1 < ℓ+ < 385,

where ℓ+ = ℓuτ/ν, and ℓ is the wire length.
∗ The effects of spatial filtering in this in-

vestigation were obviously substantial at the higher Reynolds numbers, especially near

the wall, and preferential filtering of near-wall data could have led to the appearance

of a “false” outer peak [Hutchins et al., 2009]. To more precisely establish the nature

of this outer layer behavior, spatial filtering effects need to be minimized. In this

respect, Hutchins et al. [2009] and Smits et al. [2011b] demonstrated that to avoid

all spatial filtering effects close to the wall, ℓ+ must be smaller than 4. Smits et al.

[2011b] further showed that the requirements on ℓ+ can be relaxed linearly with the

distance from the wall outside of the inner peak, and proposed a correction for inad-

equately resolved data for wall-bounded flows on smooth surfaces.

3.2 Experimental methods

3.2.1 Experimental Facility

The experiments were conducted in the Princeton University/ONR Superpipe, which

is a closed-return pipe facility, designed to produce high Reynolds number pipe flow

∗The lowest Reynolds number case at Reτ = 1500 should be excluded as it has since been found

to have a poor low velocity calibration.
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through pressurizing the working fluid, described in detail by Zagarola and Smits

[1998] and Langelandsvik et al. [2007]. A sketch of the whole facility is shown in

Figure 3.1(A) and the test section in Figure 3.1(B).

Two different test pipes with different relative roughnesses were used, one “smooth”

and one “rough”. A commercial steel pipe was used as a rough pipe, described by

Langelandsvik et al. [2007], with an average inner radius of R = 64.92 mm and a

surface roughness krms = 5 µm, giving krms/R = 7.7 × 10−5. Langelandsvik et al.

[2007] demonstrated that this pipe is hydraulically smooth up to Reτ ≈ 13× 103 and

fully rough for Reτ ≥ 101× 103.

The smooth pipe was the same as that described by Zagarola and Smits [1998],

McKeon et al. [2004a], and Morrison et al. [2004], with an average inner radius of

R = 64.68 mm and a surface roughness of krms = 0.15 µm, resulting in a relative

roughness of krms/R = 2.3 × 10−6. This pipe has been previously demonstrated to

be hydraulically smooth for Reτ < 217 × 103 (ReD < 13.5 × 106) [McKeon, 2003,

McKeon et al., 2004a], which includes all Reynolds numbers tested in the current

study. Prior to the experiments in the smooth pipe, the test pipe was disassembled to

accommodate rough pipe experiments, and then reassembled using optical inspection

of every connection to minimize mismatches between sections.

For both pipes the measurement station was located 392R downstream from the

entrance, to assure fully developed flow. The streamwise pressure gradient in the

pipe was measured with 21 pressure taps over a distance of 50R to obtain the friction

velocity, uτ .

3.2.2 NSTAP measurements

In order to acquire data with adequate spatial and temporal resolution, Nano-Scale

Thermal Anemometry Probes (see Chapter 2) were used for all velocity measurements

reported here. An image of a representative 60 µm probe of the design used is shown
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Figure 3.1: Experimental setup for pipe flow. (A) ONR Superpipe sketch; (B) Close-
up of the test section with the pressure vessel, test pipe, probe holder, and traverse;
(C) Close-up of the probe holder; (D) A typical NSTAP mounted onto prongs.

in Figure 2.1F.

The NSTAP was operated using a Dantec StreamLine constant temperature anemom-

etry system in the 1:1 bridge mode with an external resistor heating the NSTAP to

a wire temperature of approximately 450 K. The measured frequency response from

squarewave test was always above 150 kHz in still air, which increased to more than

300 kHz at the highest Reynolds number. The data were low-pass filtered using an

eighth-order Butterworth filter at 150 kHz and digitized using a 16-bit A/D board (NI

PCI-6123) at a rate of 300 kHz. A stepper motor traverse with a linear encoder with

0.5 µm resolution (SENC50 Acu-Rite Inc.) was used to position the probe. The initial

distance between the wall and the wire, y0, was determined using a depth measuring

microscope (Titan Tool Supply, Inc.) allowing for 5 µm precision in determining y0.

The NSTAP was calibrated using the pressure difference between a 0.89 mm

Pitot tube and two 0.4 mm static pressure taps located in the pipe wall at the

same streamwise location. The pressure difference was measured using four different
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Case Surface ReD Reτ pa [atm] 〈U〉 [m/s] ν
uτ

[µm] ℓ [µm] ℓ+ y0 [µm] y+0 k+rms Symbol

1 Smooth 81× 103 1,985 0 9.48 33 60 1.8 14 0.4 0.00 ⋆

2 Smooth 146× 103 3,334 0.67 10.1 19 60 3.1 14 0.74 0.01 H
3 Smooth 247× 103 5,412 2.40 8.40 12 60 5.0 14 1.2 0.01 ◮

4 Smooth 512× 103 10,481 5.43 9.37 6.2 60 9.7 14 2.3 0.02 N
5 Smooth 1.1× 106 20,250 10.8 10.5 3.2 60 18.8 14 4.4 0.05 �
6 Smooth 2.1× 106 37,690 22.5 10.5 1.7 60 35.0 14 8.2 0.09 �
7 Smooth 4.0× 106 68,160 45.6 10.4 0.95 60 63.2 14 15 0.16
8 Smooth 4.0× 106 68,371 45.9 10.3 0.95 30 31.7 28 29 0.16 ◭
9 Smooth 6.0× 106 98,190 69.7 10.6 0.66 30 45.5 28 43 0.23 •
10 Rough 993× 103 19,316 6.88 14.8 3.4 60 17.9 28 8.5 1.49 �
11 Rough 2.0× 106 36,676 13.3 16.3 1.8 60 33.9 28 16 2.82 �
12 Rough 3.8× 106 69,118 22.7 19.2 0.93 60 63.9 28 30 5.32 ◭
13 Rough 5.6× 106 100,530 34.3 19.2 0.65 60 92.9 28 44 7.74 •

Table 3.1: Experimental conditions of NSTAP measurements in pipe flow.
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pressure transducers depending on the Reynolds number. For the lowest Reynolds

number, a Datametrics 1400 transducer with a 2,488 Pa range was used, and for

the higher Reynolds numbers three different Validyne DP15 transducers with ranges

1,379 Pa, 8,618 Pa and 34,473 Pa were employed. The Pitot tube measurements

were corrected for static tap Reynolds number effects with the correlation proposed

by McKeon and Smits [2002] and for viscous effects using the correlation identified

by McKeon et al. [2003]. The streamwise pressure gradient was acquired using a

133 Pa MKS Baratron transducer for the lowest Reynolds number and a 1,333 Pa

MKS transducer for the higher Reynolds numbers. Each pressure transducer was

individually calibrated over its full range (with calibration uncertainties reported in

Chapter 3.2.3). The ambient fluid temperature change during a given profile ranged

from 0.3◦ C to 2.0◦ C over the full Reynolds number range, and the data were cor-

rected using the temperature correction outlined by Hultmark and Smits [2010].

For calibration, the Pitot probe was positioned above the NSTAP (as can be

seen in Figure 3.1(C)), and the distance between probes was measured using the

depth measuring microscope. The probes were then positioned symmetrically on

opposite sides of the pipe centreline. For all pressure measurements, sufficient time

was given for the pressure within the pressure tubing to reach a steady state and long

averaging times were used to minimize the effects of transients on the average. 14

calibration points were used both before and after each measurement and a fourth

order polynomial fit was used to find the calibration coefficients. The rest of the

experiment closely followed the procedures described by Hultmark et al. [2010].

Data were acquired for 81×103 < ReD < 60×106, with the Superpipe pressurized

for ReD ≥ 150 × 103. The flow conditions examined in this study using NSTAP are

listed in Table 3.1 and the estimated experimental uncertainties are listed in Table 3.2.

Cases 1 to 9 were measured in the smooth pipe, and Cases 10 to 13 were measured in

the rough pipe. Here, pa is the ambient pressure, and y0 is the initial distance from
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Source Uncertainty ±
Pressure (static and total) 0.4%
Temperature 0.1%
Ambient pressure 0.2%
Density, ρ 0.3%
Dynamic viscosity 0.4%
Friction velocity, smooth flow, uτ 0.8%
Friction velocity, rough flow, uτ 1.6%
Viscous length scale, ν/uτ 0.9%

Wall normal position zero, y0 5 µm
Wall normal position precision, y 0.5 µm/m
Distance between Pitot and hot wire 15 µm

Wall normal distance in inner scaling, y+ 0.53 + 0.9%

Calibration error due to calibration velocity 0.4%
Calibration error due to curve fitting 1.8%

Mean velocity derived from hot wire, U 2.2%
Mean velocity in inner scaling (smooth), U+ 2.3%
Mean velocity in inner scaling (rough), U+ 2.7%

Variance of velocity, u′2 3.0%
Variance of velocity in inner scaling (smooth), u2+ 3.4%
Variance of velocity in inner scaling (rough), u2+ 4.7%

Table 3.2: Uncertainty estimates in pipe flow.

the wall.

3.2.3 Pitot measurements

In order to evaluate the differences in mean velocity profiles acquired in Superpipe

over the last 15 years, an overview of all the results and thorough error analysis

was performed. In addition to previously available data and NSTAP data described

above, a new set of Pitot measurements was conducted.

A Pitot tube with 0.40 mm diameter was used to measure dynamic pressure and

the static pressure was measured using two 0.40 mm static pressure taps located in

the pipe wall. This Pitot diameter was comparable to the 0.30 mm and 0.89 mm
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Case ReD Reτ pa [atm] 〈U〉 [m/s] ν
uτ

[µm] d+ k+rms

1P 80× 103 1,956 0.00 9.42 33 12 0.00
2P 144× 103 3,329 0.00 17.1 19 21 0.01
3P 244× 103 5,379 0.70 16.7 12 33 0.01
4P 468× 103 9,744 2.49 15.9 6.6 60 0.02
5P 980× 103 19,011 6.82 14.9 3.4 118 0.04
6P 1.97× 106 36,065 13.5 16.3 1.8 223 0.08
7P 3.84× 106 66,286 22.5 19.8 0.98 410 0.15
8P 6.00× 106 100,280 41.0 17.5 0.65 620 0.23
9P 10.57× 106 169,690 74.0 18.0 0.38 1,050 0.39

Table 3.3: Experimental conditions of Pitot measurements in Superpipe with smooth
wall.

diameter Pitot tubes used in previous Pitot studies in the Superpipe (McKeon [2003]

and Zagarola [1996] respectively), and was equal to 0.006R or approximately 1000

viscous lengths at the highest Reynolds number measured.

The pressure difference was measured using a Datametrics 1400 transducer with

a 2,488 Pa range for all atmospheric pressure cases, and Validyne DP15 transducers

with ranges 1,379 Pa, 8,618 Pa, 34,474 Pa and 82,737 Pa for the pressurized cases,

depending on the pressure. For the streamwise pressure gradient measurements, a

133 Pa MKS Baratron transducer was used for atmospheric cases and a 1,333 Pa

MKS transducer or Validyne DP15 34,474 Pa transducer was used for pressurized

cases. All pressure transducers were carefully calibrated prior to use. For calibrating

the lowest pressure range, a liquid manometer with uncertainty of less than ±0.40%

of the reading was used, whereas for the intermediate range Validyne transducers an

Ametek pneumatic dead weight tester was used with accuracy of ±0.05%. The tunnel

pressure was measured using Validyne DP15 transducers with 345 kPa, 3,447 kPa and

27,579 kPa ranges, and these were calibrated using an Amthor dead weight pressure

gauge tester with accuracy of ±0.1% of the reading.

Data were acquired at ReD ≈ 80× 103, 150× 103, 250× 103, 500× 103, 1× 106, 2×

106, 4×106, 6×106, and 10×106. The experimental conditions are given in Table 3.3.

To position the probe, a stepper motor traverse was used equipped with a linear
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optical encoder with a resolution of 0.5 µm (SENC50 Acu-Rite Inc.), similarly to the

NSTAP setup described in Chapter 3.2.2.

3.2.4 Bias error effects

Uncertainties may be divided into bias errors and precision errors. Here, we treat

precision uncertainty as the expected variation which would occur amongst repeated

measurement of the same quantity as reflected through experimental scatter. Bias

error is more difficult to identify and we treat it as a consistent deviation between

a measured and a true quantity as introduced by the experimental setup, procedure

or analysis. The estimated errors for the data sets under consideration are provided

in Table 3.4 where uncertainty values derived from stated manufacturer values are

treated as bias error. Here we discuss several additional sources of bias error which

can play a role in estimates of κ, and investigate the impact of each source on the

estimate. All referred datasets and estimates are described in Chapter 3.3.

Impact of Pitot probe corrections

Pitot probe corrections for shear, near-wall, viscous and finite static tap size, are dis-

cussed in great detail in many sources [see, for example Tavoularis, 2005, Tropea et al.,

2007]. With the exception of eliminating data points less than two probe diameters

from the surface, the complete correction suite used here is described in Bailey et al.

[2013] and has been demonstrated to result in mean velocities measured with Pitot

tubes agreeing with those measured by hot-wires to within 1%. This difference there-

fore can be used as an approximation of the bias error which can be expected in the

measured mean velocity. However, the source of this bias should not be considered ex-

clusive to the Pitot and the accuracy of its corrections, but can equally be attributed

to uncertainty in the hot-wire mean velocity.

Of particular interest for the Pitot measurements is the magnitude of the correc-
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tion for turbulence effects which has previously been observed to significantly bias the

estimate of κ found using mean flow profiles [Nagib and Chauhan, 2008, Perry et al.,

2001]. To assess the effect of this correction on estimates of κ we repeated the analysis

without the turbulence correction. The effect of not using the turbulence correction

was found to be an increase in estimated κ of +2% when determined using Equa-

tion (3.1.1) and bias it -0.2% and +0.2% when using Equation (3.1.3) and (3.1.4)

respectively.

Initial probe position

The effects of initial probe position are discussed in detail in Örlü et al. [2010] which

illustrates how accurate determination of wall position is necessary to correctly de-

duce mean and turbulence quantities. In the Superpipe, the wall layer thickness is

64.68 mm and, at ReD = 1.3× 107, the viscous length is only 300 nm. Therefore, an

inaccurate estimate of wall position can have significant effect on the mean velocity

profile. To minimize this zero position error, the ZS data set used a capacitance-based

method to determine the zero position to within 40 µm, and the MLJMS data set

used electrical contacts between the probe and surface to identify the initial probe

position with a cited accuracy of 5 µm. For the MMJS data, no details were available

regarding how the initial probe distance was determined. For the HVBS and VS data,

initial probe position was determined via depth measuring microscope, with the zero

location marked using an electrical contact and a 5 µm uncertainty is estimated. Note

that these cited values are likely to underestimate the true bias, which can arise from

errors in estimating Pitot probe diameter, probe orientation with respect to the wall,

hot-wire probe distortion and rotation relative to the wall plane, the method used

to measure wall distance, and the possibility that electrical contact is rarely made at

a clearly defined and repeatable point [Hutchins and Choi, 2002]. These errors are

also further compounded in the Superpipe facility due to lack of optical access to the
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measurement station and therefore the inability to directly verify the position of the

probe relative to the wall.

To illustrate how uncertainty can propagate into the estimate of κ, we artificially

biased the zero position of the VS data set by +50 µm (12.5% of the probe diameter,

corresponding to a bias of approximately 1.5 viscous unit at the lowest Reynolds

number and 125 viscous units at the highest Reynolds number). For κ estimated

from Equation (3.1.1), there was a resulting bias in κ of -1% at ReD = 1 × 106 to

-3% for ReD ≥ 4× 106 corresponding to changes in κ from -0.004 to -0.01. As might

be expected, the effect on the estimates of κ using Equation (3.1.4) and (3.1.3) were

much less, corresponding Reynolds number dependent bias in κ estimate from -0.01%

to -0.05% using Equation (3.1.4) and +0.005% to +0.05% using Equation (3.1.3).

Estimate of area averaged flow velocity from discrete data

An associated error to that of initial probe position, which could have a noticeable

effect on the estimate of κ using Equation (3.1.4), is the numerical integration scheme

used to determine the area averaged velocity to calculate the Reynolds number. As

the Reynolds number increases, and the inner layer thins accordingly, there is a

potential Reynolds number dependent bias introduced into any estimate of area av-

eraged velocity due to an inability to resolve this high shear region. This compounds

any error introduced by the order of the numerical integration scheme used. In this

study, we have used second-order-accurate trapezoidal integration and, where nec-

essary, have extrapolated the profile down to the wall with data measured at lower

Reynolds numbers and assuming wall-scaling is valid. Not performing this extrapola-

tion process was found to have a surprisingly significant effect on κ determined using

Equation (3.1.4), with a bias in κ of typically +3%,+0.4%,+1% and +1% for the ZS,

MLJMS, MMJS and VS data sets respectively. For the HVBS data set, the closest

measurement point was always within the buffer layer and the extrapolation process
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was not required.

Hot-wire drift

In hot-wire anemometry, the most sensitive issue in experiments is a proper calibration

of the sensor and some drift in the response is an inherent part of the measurements.

Even the smallest drift during measurements can cause significant errors, especially

when estimating mean velocities. For the HVBS data, a calibration was conducted

on the centerline at 14 flow velocities before and after each profile and agreement

of the calibration curves was used as a validation condition for acceptance of the

profile. Then all 28 points were combined to fit the calibration curve used for all

data processing. In Figure 3.2a all calibration curves are shown and in Figure 3.2b

the relative difference, Urel, between each pre- and post-measurement calibration

and the combined calibration Ucomb is illustrated (where relative velocity is given as

Urel = (Ucal−Ucomb)/Ucomb and relative voltage as Erel = (Ecal−Emin)/(Emax−Emin)).

It can be seen that, for most cases, the relative difference between calibration curves

is below 1%.

To estimate the error from this minimal drift, all data were processed using pre-

and post-measurement calibrations separately and values of κ were compared to the

values found using combined calibration curves. Despite the agreement apparent in

Figure 3.2, regression fit to Equation (3.1.1) showed differences in κ of up to 1.1%,

whereas fits to Equation (3.1.3) and (3.1.4) had variations up to 6.3% and 5.5%

respectively. Additionally, an interpolation scheme was also attempted to transition

between pre- and post-measurement calibration curves over the course of the profile

measurements. When this was employed, the estimate of κ from regression fit was

found to vary up to 0.6% and estimates from Equation (3.1.3) and (3.1.4) varied

4.6% and 4.6% respectively. Therefore it can be seen that even a slight variation in

probe response over the course of a profile measurement will significantly impact the
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Figure 3.2: Calibration points and curves for all cases in HVBS data set. Dashed line
and circles indicate pre-calibraton fit, dotted line and squares post-calibration fit. (a)
Shows calibration points and according fitted curves; (b) shows the relative difference
Urel of the calibrations compared to the combined calibration fit.

estimate of κ and thus mean velocity measurements with hot-wires must be treated

with caution.

Use of multiple transducers over a large Reynolds numbers range

The advantage of the Superpipe is not strictly the high Reynolds numbers it can

achieve, but principally its large achievable Reynolds number range. It is this large

operating range, achieved by pressurizing the working fluid, that makes the use of

Equation (3.1.3) and (3.1.4) feasible for obtaining estimates of κ. It is also the insen-

sitivity of Equation (3.1.3) and (3.1.4) to the bias errors, discussed in Chapter 3.2.4,

which makes them attractive for estimating κ. However, measuring the quantities in

Equation (3.1.3) and (3.1.4) accurately over the range of Superpipe operating con-

ditions requires the use of multiple pressure transducers of varying sensitivity, each

of which requires individual calibration. Therefore, the final source of bias error to

be described is the error associated with using multiple transducers to measure the

quantities used in Equation (3.1.3) and (3.1.4). We will see that significant errors can
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arise from even slight differences in the calibrations between the different transducers.

To illustrate the impact this error could have on the estimate of κ, we re-analyzed

the MV data set after artificially adding a -1% error in the Pitot transducer for

2.5× 105 ≤ ReD ≤ 1× 106 and 1% error for ReD ≥ 6× 106. Whereas κ determined

by Equation (3.1.1) changed by 0.5% and -0.5% respectively in the affected Reynolds

number ranges, κ determined from Equation (3.1.3) and (3.1.4) were found to change

by -1.5% to -8%, depending on the Reynolds number range used for the fit. A similar

analysis conducted with the bias applied to the pressure gradient transducer resulted

in a 1% to 8% change in κ using Equation (3.1.3) and (3.1.4) and -0.5% and +0.5%

using Equation (3.1.1). Estimates of κ were found to be much less sensitive to bias

errors in the transducer used to measure the Superpipe operating pressure, with a

negligible effect on estimates using Equation (3.1.1) and only a 0.1% to 0.5% bias

resulting when using Equation (3.1.3) and (3.1.4).
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3.3 The von Kármán’s constant

With the addition of the new Pitot tube data, five complete data sets now exist on

the mean velocity distribution in the Princeton/ONR Superpipe at Reynolds numbers

ranging across 81 × 103 ≤ ReD ≤ 1.8 × 107. These profiles were taken using Pitot

tubes, conventional hot-wires and nano-scale thermal anemometry probes (NSTAPs).

Here, we aim to use these data to establish the best estimate for the value of von

Kármán’s constant for the flow in a hydraulically smooth pipe, together with its

uncertainty levels.

The five data sets on the mean velocity in the Princeton University/ONR Super-

pipe are the Pitot data of Zagarola and Smits [1998] (denoted ZS) and McKeon et al.

[2004a] (denoted MLJMS), the conventional hot-wire data of Morrison et al. [2004]

(denoted MMJS) whose mean flow results taken with hot-wire probes of sensing

length of 500 and 250 µm have not previously been published, the nano-scale ther-

mal anemometry probe results of Chapter 3.2.2, Hultmark et al. [2012, 2013] (denoted

HVBS), and the new Pitot data set acquired specifically for the present study (denoted

VS, see Chapter 3.2.3). A comparison of mean velocity profiles and ReD dependence

of λ from all data sets is provided in Figure 3.3.

The particular flow conditions for each data set are given in the appropriate ref-

erences where further descriptions of each experiment may also be found. For the

present analysis, to avoid any potential biasing by surface roughness effects, ZS and

MLJMS data for Rτ > 2.17 × 105 (ReD > 13.5 × 106) have been excluded. In ad-

dition, the ReD = 6 × 106 data from MMJS and HVBS experienced relatively large

temperature changes resulting in anemometer drift, and so have also been excluded.

Finally, the ReD = 5.5 × 104 case of MMJS was excluded due to errors identified in

the probe calibration data [Hultmark et al., 2010].

All Pitot data sets (ZS, MLJMS, VS) were processed using the static tap and shear

corrections proposed by McKeon and Smits [2002] and McKeon et al. [2003], with
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Figure 3.3: Comparison of all mean velocity profiles included in the current study:
(▽) ZS; (�) MLJMS; (⋄) MMJS; (◦) VS; and (△) HVBS. Inset in upper left shows
only data points falling in the range 1000 < y+ < 0.1Reτ . Inset in the lower right
shows friction factor dependency on ReD for all data sets.

72



www.manaraa.com

Data set ZS MLJMS MMJS HVBS VS

Source bias prec. bias prec. bias prec. bias prec. bias prec.
Pitot differential ±0.4% ±0.8%∗ ±0.4% ±0.6%∗ N/A N/A ±0.4% 0.8%∗

Pitot corrections ±1%† ±0.3%‡ ±1%† ±0.3%‡ N/A N/A ±1%† 0.3%‡

Hot-wire precision N/A N/A ±0% ±0.4%∗ ±0% ±0.4%∗ N/A
Hot-wire caln. N/A N/A ±1% ±0% ±1% ±0% N/A
Anemometer drift N/A N/A ±1% ±0% ±1% ±0% N/A
y position (µm) 118 5 41 5 41 5 5.25 0.5 13.25 0.5
Tunnel pressure ±0.3% ±0.3% ±0.3% ±0.3% ±0.3%
Pressure gradient ±(0.17–0.83)% ±(0.17–0.83)% ±(0.17–0.68)% ±(0.17–0.68)% ±(0.17–0.68)%
Temperature ±0.05% ±0.05% ±0.05% ±0.05% ±0.05%
Dynamic viscosity ±0.8% ±0.8% ±0.8% ±0.8% ±0.8%
Pipe radius ±0.06% ±0% ±0.06% ±0% ±0.06% ±0% ±0.06% ±0% ±0.06% ±0%

Table 3.4: Bias and precision uncertainty estimates. Where a single value is stated across both bias and precision columns, the
same value was used for both bias and precision uncertainty. ∗Value estimated from data scatter. †Value estimated based on
results of Bailey et al. [2013]. ‡Value estimated from scatter in measured velocity gradient.

73



www.manaraa.com

the additional turbulence correction and associated near-wall correction discussed

by Bailey et al. [2013]. As done by McKeon et al. [2004a], we discard Pitot data

from measurement points lying less than two probe heights from the surface. To

estimate the turbulence intensity required for applying the turbulence correction, the

streamwise turbulence intensity of HVBS is used for ReD ≤ 6× 106. For Pitot cases

at higher Reynolds numbers, the turbulence intensity was estimated by assuming that

the logarithmic scaling observed by HVBS was valid throughout the layer.

A comparison of the newly acquired VS Pitot data set to the HVBS NSTAP data

set taken at the same Reynolds numbers is provided in Figure 3.4. The results demon-

strate negligible differences between the two data sets, after all applicable corrections

have been applied.

The fitting of Equation (3.1.1), (3.1.3) and (3.1.4) to the data were conducted using

the linearized form of the equations applying a least-squares approach (implemented

through the MATLAB function polyfit). The fit to Equation (3.1.1) therefore returned

κ−1 and B; to Equation (3.1.3) it returned κ−1 and (B+B∗); and to Equation (3.1.4)

it returned (2
√
2κ log e)−1 and C2. Here, we only consider the values of κ and do

not examine the additive coefficients in any detail. For fitting to Equation (3.1.3),

U+
cl was determined by a cubic fit to the three data points straddling the centerline,

although there was a negligible difference when compared to the same estimate using

the measurement point located at the pipe centerline.

Estimates for the experimental uncertainties used in the uncertainty analysis are

listed in Table 3.4. In most cases, given that much of the facility and instrumenta-

tion used was largely unchanged, these follow the values provided by ZS. Additional

sources of bias error are discussed in Chapter 3.2.4, and the Monte Carlo based error

analysis approach used to estimate the uncertainty in κ is described in Bailey et al.

[2014].
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Figure 3.4: Comparison of (◦) VS Pitot and (△) HVBS mean velocity profiles at ReD = 80 × 103, 150 × 103, 250 × 103, 500 ×
103, 1× 106, 2× 106 and 4× 106. Note that successive Reynolds numbers are shifted vertically by 2uτ for clarity.
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Figure 3.5: Value of κ as estimated from least-squares fit of Equation (3.1.1) to
the mean velocity profiles measured at different Reynolds numbers for the range
of data points lying in the range (a) 1000 < y+ < 0.1Reτ and (b) 3(Reτ )

1/2 <
y+ < 0.15Reτ . Dash-dot-dot lines indicate 95% confidence limits and dashed lines
indicate 50% confidence limits. Black dashed lines indicate the values of κ = 0.40
and κ = 0.421.

3.3.1 κ from the mean velocity profile

We first find κ using a least-squares fit of Equation (3.1.1) to each individual velocity

profile within the range y+ > 1000 to y/R < 0.1. These values were selected to ensure

that the fit was unambiguously contained within the range where a log law has been

found to hold in this flow (y+ > 800 to y/R < 0.15), and this choice is not meant to

suggest a particular range of validity of the logarithmic scaling.

The results are presented in Figure 3.5a and suggest a Reynolds number inde-

pendent value of κ, but with large variations in experimental uncertainty across the

Reynolds number range and between measurements. Note that, with regards to un-

certainty, there appears to be no advantage to using either thermal anemometry or
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Pitot tube measurement approaches, because the largest uncertainty is associated

with the smallest number of data points falling within the acceptance range and used

for the regression fit. Thus, the uncertainty levels generally decrease with increasing

ReD. The exception is the early data set of ZS, where the higher uncertainty levels

are mostly due the relatively large Pitot probe used by ZS so that fewer measure-

ment points fall within the fitting range. The most likely values for κ vary consid-

erably among the data sets. For the earlier Pitot probe profiles, the ZS values lie

between 0.39 and 0.43, while the MLJMS data set suggests 0.4 to 0.42 (consistent

with McKeon et al. [2004a]’s previous estimate of 0.421 at high Reynolds number).

Both thermal anemometry cases give estimates of κ varying between 0.38 and 0.40,

whereas the most recent Pitot data set indicates a value between 0.40 and 0.41.

In addition to the conservative range (y+ > 1000 to y/R < 0.1), the proposed

overlap layer range of 3(Reτ )
0.5 < y+ < 0.15Reτ of Marusic et al. [2013] was also used

to determine κ. The resulting estimate was found to be Reynolds number dependent

for ReD . 2 × 106, as shown in Figure 3.5b. Note that y+ = 3(Reτ )
0.5 ≈ 600 at

ReD ≈ 2× 106, corresponding to the lower limit observed by McKeon et al. [2004a].

Above this Reynolds number the values of κ estimates become very close for the two

different limits. Wide variation in the κ values was seen for any lower limits below

y+ ≈ 800 but for larger y+ > 800, the change of the limit resulted in minimal change

in the value of κ within each separate profile. Virtually identical results were observed

when the upper limit was reduced to y/R = 0.1, suggesting that the Reynolds number

dependence is caused by too low lower limit. Therefore, below ReD ≈ 2 × 106 the

current results do not support the Reynolds number dependent lower limits used by

Marusic et al. [2013] in pipe flow.
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Figure 3.6: Value of κ estimated from least-squares fit of (a) Equation (3.1.4) (friction
factor fit) and (b) Equation (3.1.3) (centerline velocity fit) shown as a function of the
lowest Reynolds number case used for the regression fit. Dash-dot-dot lines indicate
95% confidence limits and dashed lines indicate 50% confidence limits.

3.3.2 κ from bulk properties

Although regression fits to the mean velocity profiles can provide an estimate of κ, the

procedure is sensitive to the range of y+ values selected for fitting, and to small errors

in uτ [see, for example Örlü et al., 2010]. However, for pipe flow a valid estimate of κ

must satisfy Equation (3.1.1) and (3.1.2), and Equation (3.1.3) and (3.1.4). Therefore,

given a sufficient Reynolds number range, one can also estimate κ from the Reynolds

number dependence of the bulk flow properties. This was the approach taken by

Zagarola and Smits [1998] and McKeon et al. [2004a].

Figure 3.6 shows the value of κ estimated by fitting Equation (3.1.4) and (3.1.3) to

the centerline velocity data and the friction factor data, respectively. The results are

shown as a function of the lowest Reynolds number included in the fit. For example,
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for the highest Reynolds number shown κ was estimated from fitting only the two

highest Reynolds number cases; each successively lower Reynolds number data point

on the figure represents the results from a curve fit with one additional point included

in the fit. Hence the lowest Reynolds number plotted represents the estimate of κ

determined from fitting the entire data set.

As noted by McKeon et al. [2004a] with respect to the MLJMS data set, we see

that for ReD > 300× 103 the estimates for all data sets become Reynolds number in-

dependent, except for the highest Reynolds number values where the number of points

in the fit are reduced and the uncertainty increases significantly. For ReD > 300×103,

fitting Equation (3.1.4) or (3.1.3) gives similar values, although the latter estimate is

subject to slightly higher uncertainty because it relies on a single measurement of U+
cl

at each Reynolds number. The ZS, MLJMS and MMJS data sets return a value of

κ ≈ 0.42 consistent with the McKeon et al. [2004a] estimate of κ = 0.421. However

the more recent HVBS and VS data indicate κ ≈ 0.41 and 0.40, respectively. In ad-

dition, we see that the uncertainties in the thermal anemometry data sets are much

higher than that of the Pitot data sets, primarily because the thermal anemometry

data cover a smaller and lower Reynolds number range. A fit of Equation (3.1.4)

was also applied to the high Reynolds number friction factor data of Swanson et al.

[2002] [tabulated in McKeon et al., 2004b]. The resulting estimate of κ was found to

depend strongly on the Reynolds number range selected for the fit, varying between

0.41 and 0.5.

3.3.3 Discussion

The different estimates of κ from each data set are summarized in Figure 3.7. For

the regression fit to Equation (3.1.1) we use the value determined from the highest

Reynolds number case, where the uncertainty is lowest due to the number of data

points in the logarithmic region. For the estimates determined from regression fits
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to Equation (3.1.3) and (3.1.4), we use the value determined from fitting to ReD >

3×105, which comprises the range where the estimate becomes ReD independent and

the uncertainties are lowest due to the number of data points included in the fit.

If we assume that the log law is valid, then Equation (3.1.1), (3.1.3) and (3.1.4)

must be simultaneously valid and inspection of Figure 3.7a reveals two important

points. First, no single value of κ is within the 95% uncertainty bounds of all five

data sets. This indicates that one or more sources of uncertainty remain undetected

while also reflecting the difficulty inherent in determining κ experimentally. Second,

the estimates obtained by fitting Equation (3.1.3) and (3.1.4) are consistently higher

than those obtained by fitting Equation (3.1.1), suggesting that these undetected

errors are consistently biasing the estimate.

Many factors contribute to the overall uncertainty, but the primary ones are the

estimate of y0, the method chosen to integrate the mean velocity profile near the wall

in order to find U , drift in the thermal anemometry measurements, and turbulence

corrections to the Pitot probe data (see Chapter 3.2.4). For example, the turbulence

correction influences the value of κ obtained by fitting Equation (3.1.1) by 2% and

a relatively small (0.08% of R) uncertainty in the wall distance can change κ by up

to 3%, whereas estimates obtained by fitting Equation (3.1.3) and (3.1.4) are nearly

unaffected by these factors. On the other hand, the estimates obtained using Equa-

tion (3.1.3) and (3.1.4) are very sensitive to the different pressure transducers used

to obtain the velocity and pressure gradient, as well as the integration methods for

estimating bulk properties. Estimates obtained from the hot-wire data are extremely

sensitive to any type of drift, where estimates obtained using Equation (3.1.3) and

(3.1.4) can be influenced by up to 6% even with high-quality calibrations with less

than 1% drift. Overall, it can be seen that there is no measurement technique or

method of analysis that could be identified as the most precise.

Although the 95% confidence intervals indicate that no value of κ is supported by
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all data sets, within each data set there exists a range of possible values, following

the assumption that Equation (3.1.1), (3.1.3) and (3.1.4) must be simultaneously

valid. Thus ZS indicates 0.41 < κ < 0.42; MLJMS indicates 0.41 < κ < 0.43;

MMJS indicates 0.39 < κ < 0.41; HVBS indicates 0.39 < κ < 0.41; and VS indicates

0.39 < κ < 0.41. However, since these ranges represent an overlap of three separate

95% confidence ranges, the confidence of κ lying within this range for each data set

is actually lower. This is demonstrated by the probability density functions (pdfs)

shown in Figure 3.7b, which were compiled from combining all three methods used

to estimate κ using the uncertainty analysis described in Bailey et al. [2014]. We see

that the most probable value of κ is 0.40 for the three most recent data sets, arising

from reduced uncertainty in the fitting of Equation (3.1.1) at high Reynolds numbers

combined with the higher uncertainty in fitting Equation (3.1.3) and (3.1.4) for these

data sets. Conversely, the ZS and MLJMS data sets indicate the most probable value

of κ is 0.42 due to the agreement between the fits of Equation (3.1.3) and (3.1.4) (and

reduced uncertainty) for these data sets.

Using these p.d.f.s, it can also be determined that the confidence of κ being within

the intervals of overlap in 95% confidence for the three techniques is approximately

50% or less for the ZS, MLJMS, MMJS and HVBS data sets (i.e., a 50% chance that

0.41 < κ < 0.42, 0.41 < κ < 0.43, 0.39 < κ < 0.41, and 0.39 < κ < 0.41 respectively).

In comparison the agreement between the three estimates of κ for the VS data set

results in a 73% confidence that 0.394 < κ < 0.408, indicating that this data set is

the one least affected by undetected bias errors. The 95% confidence interval for this

data sets combining the three approaches was found to be 0.389 < κ < 0.411.

Thus, if we consider only the single VS data set, we could therefore conclude that

κ = 0.40 ± 0.01. However, doing so would necessarily assume that only this data

set was free of undetected bias errors which affected all previous data sets. Such

filtering of data sets, although not completely arbitrary, is not prudent and therefore
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Figure 3.7: (a) Values of κ estimated from each data set with error bars indicating
95% confidence interval. For each data set, the value on the left is obtained from the
regression fit to Equation (3.1.1); the one in the center is from the regression fit to
Equation (3.1.3); and the one on the right is from the regression fit to Equation (3.1.4).
(b) Probability density functions of κ for each data set found by combining uncertainty
of all three estimates.
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Figure 3.8: Plots of U+ − κ−1 ln y+ within the range 1000 < y+ < 0.1Reτ for (a)
κ = 0.38; (b) κ = 0.40 and (c) κ = 0.42: (▽) ZS; (�) MLJMS; (⋄) MMJS; (◦) VS;
and (△) HVBS. Highlighted profiles are the highest Reynolds number profiles for
each data set.

we must consider the complete collection of data. This lack of consensus suggests

the actual uncertainty in κ is likely to be higher than that given by any single data

set, and a more conservative estimate is κ = 0.40 ± 0.02. The profiles in the range

1000 < y+ < 0.1Reτ are compared to this range of κ in Figure 3.8b, in which the

logarithmic region should appear constant and equal to B over the entire overlap

layer. These results suggest a value of B = 4.5± 0.3 when κ = 0.40.

This estimate of κ is identical to the recent values found for channel flow by
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Jiménez and Moser [2007] and Schultz and Flack [2013], and the uncertainty limits

are consistent with the currently accepted values for boundary layers of κ = 0.38

to 0.39 [Marusic et al., 2013, Nagib and Chauhan, 2008, Österlund et al., 2000]. It

would appear, therefore, that the present results support the existence of a uni-

versal value of κ. However, inspection of Figure 3.8 which shows the quantity

(U+ − κ−1 ln y+) for κ = 0.38, 0.4 and 0.42, provides little support for the proposed

boundary layer value of κ = 0.38 within the current pipe flow results. It should

also be noted that the present results required a large range of Reynolds number

and the use of the most conservative estimate of the logarithmic region to date to

obtain a Reynolds number independent estimate of κ. To obtain a comparable es-

timate for turbulent boundary layers and channels would require significantly more

data with Reτ > 10, 000 than is currently available (at least for data accompanied by

an independent skin friction measurement).

This is in stark contrast to the recent trend of citing experimentally determined

values of κ to high precision (i.e. 0.436 for pipe flow [Zagarola and Smits, 1998], 0.384

for turbulent boundary layers [Nagib and Chauhan, 2008, Österlund et al., 2000],

0.421 for pipe flows [McKeon et al., 2004a], 0.386 and 0.389 for pipe and channel

flows [Monty, 2005], 0.387 for the atmospheric surface layer [Andreas et al., 2006]. In

the Zagarola and Smits [1998] and McKeon et al. [2004a] studies at least, this level

of precision appears overly optimistic.

3.3.4 Conclusions

For the first time, all available smooth-wall mean flow data sets from the Princeton

Superpipe were analyzed to determine the von Kármán constant, κ, using three dif-

ferent methods. Due to its large Reynolds number range and controlled conditions,

this facility offers a unique opportunity to estimate the value of κ and its attendant

uncertainty.
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Unlike most prior studies investigating the value of κ for pipe flow, we do not

limit our analysis to a single data set. We find no clear consensus on the value of κ

obtained from multiple data sets measured largely independently in the same facility,

even following the application of all known corrections and taking into account all the

known uncertainties. This suggests the actual uncertainty in κ is likely to be higher

than given for any single data set studied. Contrary to what has been suggested in

previous work, we found that differences between values of κ cannot be attributed

only to the differences between hot wire anemometry and Pitot tube measurements.

The present results also did not support the recently proposed Reynolds number

dependent logarithmic region limits of 3
√
Reτ < y+ < 0.15Reτ [Marusic et al., 2013],

at least for pipe flows below Reτ ≈ 40, 000.

Based on all our observations, we therefore estimate the value of κ for high

Reynolds number pipe flow to be 0.40± 0.02.

The fact that, even with this facility, using modern instrumentation, the value

of κ can only be determined to within this precision is a notable result. In order to

obtain a more precise estimate of κ, improved experimental techniques are required,

accompanied with carefully conducted experiments and analysis. It should also be

noted that evaluation of κ in turbulent boundary layers is even more challenging,

given that measurements of uτ are less accurate.
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3.4 Logarithmic scaling of turbulence

Despite these uncertainties regarding the value of κ, the mean velocity scaling be-

havior is reasonably well established. Finding the equivalent scaling behavior for the

turbulence quantities, however, has been particularly elusive. The Reynolds number

scaling of the streamwise Reynolds stress, u2+, which describes the intensity of the

turbulence, has been the subject of intensive research. NSTAP measurements have

provided us a unique opportunity to measure instantaneous velocities at extremely

high Reynolds numbers. Here, we report the scaling behavior of u2+ over an unprece-

dented range of Reτ and degree of accuracy. NSTAP data were acquired in a smooth

pipe for Reynolds numbers ranging between 2 × 103 < Reτ < 98 × 103 (cases 1-6

and 8-9 in Table 3.1). The calibration and data analysis techniques were described

in Chapter 3.2.2.

3.4.1 Inner scaling

Figure 3.9 shows the values corrected for spatial filtering [Smits et al., 2011b] of u2+

as a function of distance from the wall in inner scaling, y+, for all Reynolds numbers

measured. We begin by examining the results in the near-wall region. Of particular

interest in this region is the scaling behavior of the near-wall peak in u2+ located

at y+ ≈ 15. This peak is associated with the location where the turbulence pro-

duction rates are highest. In the past, it had been postulated that the near-wall

turbulence was driven solely by the presence of the wall and therefore u2+ would

depend on inner variables alone. Earlier studies appeared to support this hypothe-

sis, but results from the high Reynolds number atmospheric surface layer and direct

numerical simulations at low Reynolds numbers indicate that the magnitude of this

peak is Reynolds number dependent due to interaction between near-wall eddies and

those further from the wall [Smits et al., 2011a]. In contrast, recent low Reynolds
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Figure 3.9: Inner scaled turbulence fluctuations for 2 × 103 < Reτ < 98 × 103.
✩ , Reτ = 2.0 × 103; ▽, Reτ = 3.3 × 103; ⊲, Reτ = 5.4 × 103; △, Reτ = 10.5 × 103;
�, Reτ = 20.3×103; ⋄, Reτ = 38×103; ⊳, Reτ = 68×103; ◦, Reτ = 98×103; Symbols
as indicated in Table 3.1.

number results from the Superpipe, presented by Hultmark et al. [2010], indicate

that the near-wall peak is independent of Reynolds number, and collapses in inner

variables. However, Hultmark et al. [2010] measurements were performed with con-

ventional hot-wire probes and therefore cover a limited Reynolds number range, that

may have been too small to reveal an inner peak growth beyond that of experimental

uncertainty.

For the results shown in Figure 3.9, it is evident that the magnitude of the inner

peak is invariant with Reynolds number, within the range of 9.0± 0.3, agreeing with

the expected u2+ measurement uncertainty of ±0.3 at this location. This observation

applies for 3.3×103 < Reτ < 20×103 (for higher Reynolds numbers the inner peak was

below the measurement point closest to the wall). Note that this value is somewhat

higher than those previously reported in lower Reynolds number studies in this fa-
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cility; 7.7 using un-corrected hot-wire probes for 691 < Reτ < 3336 [Hultmark et al.,

2010], and 8.1 using an NSTAP for 1133 < Reτ < 3312 [Vallikivi et al., 2011]. It is

possible, therefore, that the uncertainty in measuring u2+ is concealing a slow growth

of the inner peak. This problem is compounded by the temporal resolution required

to fully capture the turbulence, which may help to explain the difference between the

two low Reynolds number data sets: the usual frequency response of a hot wire is

considerably lower than that of a typical NSTAP.

This result is in contrast to previous experience with turbulent boundary layers

at moderate Reynolds numbers, where the growth of the inner peak is seen to go

hand-in-hand with an increasing influence of large-scale outer eddies on the near-wall

dynamics. This modulation has been proposed as the basis for a near-wall model

for Large Eddy Simulations by Marusic et al. [2010b], but this seems unnecessary

for pipe flows where this interaction appears to be minimally significant, or even

entirely absent. In this study, new results in high Reynolds number boundary layer

are described in Chapter 5, where the behavior of streamwise Reynolds stress in

boundary layers will be further discussed.

3.4.2 Outer scaling

In addition to the inner peak at y+ ≈ 15, the results presented in Figure 3.9 also

reveal the presence of an outer peak between 100 < y+ < 800 for the three highest

Reynolds numbers measured. Morrison et al. [2004] reported similar behavior, but

their observations are sometimes dismissed because at their highest Reynolds num-

bers ℓ+ = 385, and spatial filtering undoubtedly had a significant impact on their

measurements. However the current results demonstrate that the existence of this

outer peak is a feature of high Reynolds number turbulence, and not simply an ar-

tifact of spatial filtering. Furthermore, we can find the position of the outer peak

as a function of Reynolds number as y+p = 0.23(Reτ )
0.67. This is slightly different

88



www.manaraa.com

compared to the findings of Morrison et al. [2004] who found y+p = 1.8(Reτ )
0.52 which

is most likely because of the limitations on their data, including a more limited range

of Reynolds numbers.

The presence of an outer peak has several important implications for wall-bounded

turbulence at extreme Reynolds numbers. First, none of the many turbulence models

that exist today will predict its appearance, representing a fundamental flaw in tur-

bulence modeling. Second, at some high Reynolds number the outer peak magnitude

could exceed that of the inner peak, simply because the magnitude of the inner peak is

a constant multiple of uτ , and the magnitude of the outer peak is a Reynolds number

dependent factor of uτ . Such behavior reflects a shift in the turbulence production

away from the wall with increasing Reτ as a consequence of the continually increas-

ing separation of scales. Although the rate of turbulence production will always be a

maximum closest to the wall, our results imply that the peak production will increas-

ingly occupy a smaller physical region in the flow as the Reynolds number increases.

As illustrated in Figure 3.10, although the production rates are lower further away

from the wall, turbulence will be produced over an increasingly larger area relative

to that corresponding to the near wall production.

The location where the outer peak develops is above y+ > 50, a region where

the mean flow is traditionally expected to scale logarithmically. Within this region,

Townsend [1976] hypothesized that turbulence production and dissipation should be

in equilibrium. However, the development of the outer peak implies that such an equi-

librium does not exist in the region of the outer peak ( y+ . 800) since the presence

of the peak indicates production exceeds dissipation here. As a result, we should not

expect true logarithmic scaling of the mean flow this close to the wall, entirely con-

sistent with the results of McKeon et al. [2004a], who found that logarithmic scaling

in the mean flow did not emerge until y+ & 600.

89



www.manaraa.com

Re+ ≈ 1× 103

Re+ ≈ 1× 104

Re+ ≈ 1× 105

log (y/R)

log (y/R)

log (y/R)

near-wall overlap wake

Figure 3.10: Schematic of the different regions of the flow at different Reynolds num-
bers. To the left in physical space and to the right on a logarithmic axis. The graph
shows the production of turbulence kinetic energy in pre-multiplied form (so that
equal areas under the graph corresponds to equal contributions to the total produc-
tion).
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3.4.3 Logarithmic region in turbulence

We now shift our attention to this logarithmically scaled region, which forms as an

overlap layer between inner and outer scaled regions of the mean flow (that is, the

region where 600ν/uτ ≤ y ≤ 0.15R).

Logarithmic scaling of the turbulent fluctuations was first predicted by Townsend

[1976] who used the attached eddy hypothesis to show that the streamwise and span-

wise Reynolds stresses should follow the logarithmic variation given by

u2+ = B1 − A1 ln
[ y

R

]

(3.4.1)

within a region where the eddies scale on y, that is, within the overlap region where

the mean velocity displays logarithmic scaling. The spectral assumptions leading to

this relation are described in Chapter 7.1. Subsequently, Perry and Abell [1977] used

a similarity analysis of the spectral behavior of turbulence in smooth and rough pipe

flows to suggest that, in the overlap region,

u2+ = B1 − A1 ln
[ y

R

]

− F (y+)−0.5 (3.4.2)

with B1 = 3.53, A1 = 0.8 and F = 6.06. The viscous term was intended to capture

the contribution of the smallest eddies to the total intensity such that Equation (3.4.2)

asymptotes to Equation (3.4.1) at sufficiently high Reynolds number . Perry et al.

[1986] extended the measurements of Perry & Abell and refined the constants to

B1 = 2.67 and A1 = 0.9. These pipe flow studies were performed at relatively low

Reynolds numbers (1610 ≤ Reτ ≤ 3900) and therefore the viscous correction term

was always significant.

The existence of the logarithmic region described by Equation (3.4.1) had never

been fully validated due to a very limited range of Reynolds numbers achieved in
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previous experimental studies, whereas our current experiments cover two orders of

magnitude in Reynolds numbers. By plotting the streamwise turbulent fluctuations

against y/R, as in Figure 3.11, our results conclusively demonstrate the existence of

such a logarithmic behavior for the turbulence intensity. A regression fit of the three

highest Reynolds numbers indicates that B1 = 1.48± 0.30 and A1 = 1.24± 0.10.

The measurements presented here are the first to show that the logarithmic scaling

only becomes evident for y/R < 0.15 once Reτ & 20 × 103 and increasing in spatial

extent with Reynolds number until it spans more than a decade in y/R, or 10% of

the pipe radius, at the highest Reynolds number measured.

One particularly interesting observation which we can make from Figure 3.11 is

that the Reynolds number at which the logarithmically-scaled u2+ region appears

is approximately the same as the one where the outer peak emerges. Because the

logarithmic region extends all the way to the outer peak, we can infer that the outer

peak forms as a result of increased scale separation between the inner-scaled turbulent

motions produced at the wall and the outer-scaled turbulent motions produced further

from the wall.

We have seen that inner scaling in u2+ is observed for y+ < 80, and outer scaling

is observed for y+ > 800. The intermediate range between these two limits approxi-

mately corresponds to that of the power-law-like region in the mean flow, suggesting

that in this region the mean flow follows inner scaling, even though there is insuf-

ficient scale separation for the fluctuations to form an overlap region — dissipative

scales are not fully separated from the energy-containing scales. It was found that

the onset of outer scaling, that is, the lower limit of the logarithmic region, corre-

sponds (approximately) to the location where y/η ≈ 100, where η is the Kolmogorov

length scale, which gives an estimate of the required scale separation. These obser-

vations are consistent with the mesolayer described by Hultmark [2012] which shows

up as an offset in the logarithmic behavior of the fluctuations. This concept is also
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Figure 3.11: Outer scaled turbulence fluctuations for 2× 103 < Reτ < 98× 103. Solid
line is the log-law of the turbulent fluctuations. Only data for y+ > 100 shown for
clarity. Symbols same as in Figure 3.9 and indicated in Table 3.1.

consistent with the presence of a viscous term, as included by Perry et al. [1986] in

Equation (3.4.2), since both terms act to reduce the fluctuations compared to the

logarithmic equivalence closer to the wall.

We can now seek to relate the turbulence scaling to the mean velocity scaling.

We find that when comparing profiles of the fluctuating and mean velocities for very

high Reynolds numbers, as is done in Figure 3.12, the same regions identified by

McKeon et al. [2004a] for the mean velocity profile are also clearly observed in the

turbulence profile. The region where the inner peak in u2+ exists (y+ . 50) corre-

sponds to the near-wall region, where the mean velocity and turbulence profiles scale

on inner variables. The region between the inner and outer peaks is a blending region

where the mean profile exhibits a power law behavior (50 . y+ . 800). Further away

from the wall, both the mean and turbulence intensity follow a logarithmic behavior

extending up to y/R = 0.15. Finally, an outer region can be identified for y/R > 0.15
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Figure 3.12: Comparison of mean velocity and turbulence streamwise fluctuation
profiles for Reτ = 98 × 105. Red symbols are mean velocities, blue solid line the
log-law for the mean velocity and the black solid line is the power-law for the mean
velocities as described by McKeon et al. [2004a]. Blue symbols are the turbulence
fluctuations and the red solid line is the log-law for the fluctuations, as reported in
this chapter. The colors of the different regions are the same as in Figure 3.10.

where the mean velocity and the turbulence intensity scale using outer variables.

These four regions are only truly distinct at the extremely high Reynolds numbers

measured in the current study. For lower Reynolds numbers, no separation exists

between y+ < 800 and y/R > 0.15 and therefore the logarithmic region is not evident,

neither in the mean velocity nor in the turbulence. This high degree of correspondence

was previously unknown, and presents an important simplification in the modeling

of wall-bounded turbulence. It must be noted that the nature of the mean flow

power law scaling for y+ < 800 can create the (misleading) impression of logarithmic

scaling. Examples can be found in the literature of observations of logarithmically

scaled mean flow at Reynolds numbers as low as Reτ ∼ O(102), however here we

show that to achieve the scale separation to produce a distinct logarithmically scaled
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layer, Reτ ∼ O(104).

3.4.4 Conclusions

The measurements reveal that high Reynolds number turbulence displays a previously

unknown similarity to the mean velocity distribution, in that the near-wall behavior is

Reynolds number independent (corresponding to the viscous and buffer layer regions

in the mean velocity), there is a transitional regime that links the near-wall region

to the logarithmic region (corresponding to McKeon et al. [2004a] power law region),

and there is an outer region that spans the same range as that seen in the mean flow,

both for the logarithmic region and the wake region.

It was observed that the nature of the interface between the inner-scaled near-

wall region and outer-scaled logarithmic region produces a peak in the streamwise

Reynolds stress distribution, which appears at the same Reynolds number where the

logarithmic region becomes established. This confirms earlier observations in high

Reynolds number flows, where a similar outer peak has been noted. The onset of the

logarithmic region is found at location where the wall distance is equal to about 100

times the Kolmogorov length scale.

Thus, our results suggest that modeling wall-bounded turbulent flows at extreme

Reynolds numbers can be greatly simplified. In particular, at these extremely high

Reynolds numbers the logarithmically scaled overlap layer will increasingly dominate

the near wall flow, occupying as much as 12% of the pipe radius, whereas the inner-

scaled region at these Reτ values will occupy much less than 1%. Correspondingly, a

greater percentage of turbulence production will also move to the overlap layer and,

at extremely high Reynolds numbers, the near-wall turbulence production cycle will

ultimately become irrelevant. In the limit of infinite Reynolds number, the entire

flow will scale only with y/R, and one of the essential difficulties with wall-bounded

turbulence, which is that it is a two-scale problem, will vanish.
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Chapter 4

Turbulence in rough-wall pipe flow

4.1 Introduction

One of the more important concepts for the understanding of turbulent flows over

rough surfaces is Townsend’s hypothesis [Townsend, 1976], which states that if the

height of the shear layer, R, is much larger than the roughness height, k, the only

effect of the roughness is to change the boundary condition by changing the wall shear

stress. In all other respects, the flow far from the roughness elements is independent

of the wall roughness. That is, when the mean flow and turbulent fluctuations are

scaled by the friction velocity the profiles are universal, although the mean velocity

profile in inner coordinates will be shifted downward by an amount that depends on

the roughness.

Townsend’s hypothesis has been confirmed by many authors [see for example

Allen et al., 2007, Flack et al., 2005, Kunkel et al., 2007], although some studies found

the geometry of the roughness to be important through its effect on the turbulence,

especially in the transitionally rough regime. Jiménez [2004] noted that most of these

studies had large values of the relative roughness ratio k/R, and he proposed that

the influence of the geometry of the roughness on the outer flow should diminish
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as k/R → 0 since the information of the roughness reaches the outer flow after a

long series of eddy interactions. He further stated that high quality experiments are

needed with simultaneous small k/R and large k+ values, which implies very high

Reynolds numbers. This was attempted by Kunkel et al. [2007], who investigated the

validity of Townsend’s hypothesis by comparing measurements taken in two pipes

with different surface roughness for Reynolds numbers up to Reτ = 100 × 103. One

pipe was smooth (k+rms < 0.25), and other was rough so that k/R = 3.9× 10−5 with

k+rms up to 11, where krms is the rms roughness height [Shockling et al., 2006]. The

results supported Townsend’s hypothesis, but the authors noted that experimental

errors due to, for example, spatial and temporal filtering of the hot-wire signal added

to the uncertainty, especially close to the wall where the two flows showed significant

differences.

Here, we are concerned with the scaling behavior of hydraulically smooth, transi-

tionally rough, and fully rough pipe flow at very high Reynolds numbers with small

relative roughness. We examine measurements in pipe flow at Reynolds numbers

ReD from 81× 103 to 6.0× 106. In terms of the friction Reynolds number, Reτ , this

corresponds to 2.0×103 ≤ Reτ ≤ 101×103; all experimental conditions are described

in Chapter 3 and listed in Table 3.1.

4.2 Mean velocity

The mean velocity profiles for all Reynolds numbers in the smooth and rough pipes

obtained using NSTAP are shown in Figure 4.1, plotted in inner coordinates. For

the smooth-wall data set, it is clear that inner scaling collapses the data well up to

the wake region whereas the rough-wall pipe, as expected, demonstrates a progressive

downward shift of the profiles as k+rms increases. In all cases, the profiles display the

97



www.manaraa.com

10
0

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

35

y+

U
+

10
0

10
1

10
2

10
3

10
4

10
5

y+

(a) (b)

Figure 4.1: Mean velocity profiles for (a) smooth and (b) rough-wall cases: ✩ , Reτ =
2.0 × 103; ▽, Reτ = 3.3 × 103; ⊲, Reτ = 5.4 × 103; △, Reτ = 10.5 × 103; �, Reτ =
20.3 × 103; ⋄, Reτ = 38 × 103 (smooth), Reτ = 37 × 103 (rough); ⊳, Reτ = 68 × 103

(smooth), Reτ = 69 × 103 (rough); ◦, Reτ = 98 × 103 (smooth), Reτ = 101 × 103

(rough). Symbols as indicated in Table 3.1 and lines show linear and log-law.

anticipated region of logarithmic dependence given by

U+ =
1

κ
ln y+ + B −∆U+, (4.2.1)

where ∆U+ is the Hama roughness function [Hama, 1954]. The values κ = 0.40 and

B = 5.1 found in 3.3 are used throughout current study.

Shift in mean velocity profiles described by Townsend [1976] is compensated by

the Hama roughness function ∆U+. Its magnitude depends on k+rms and the particular

nature of the roughness. The value of ∆U+ as a function of the equivalent sand grain

roughness height, ks, is compared in Figure 4.2 to that found in the same pipe by

Langelandsvik et al. [2007], who used Pitot tubes to acquire the mean velocity data.

Langelandsvik et al. [2007] found that k+s = 1.6k+rms, which, given the good agreement

shown Figure 4.2, was also assumed for our experiments.
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Figure 4.2: Hama roughness function as a function of non-dimensionalized
roughness height k+s = 1.6k+rms from current study (hollow symbols) and
from Langelandsvik et al. [2007] (filled symbols).

To better examine the range of applicability of this logarithmic scaling we define

the functions

Ψ1 = U+ − 1

κ
ln y+ − B −∆U+ (4.2.2)

and

Ψ2 = U+
cl − U+ +

1

κ
ln
[ y

R

]

. (4.2.3)

Figure 4.3 shows the variation of Ψ1 for the three highest Reynolds number cases

in inner coordinates for both smooth and rough walled pipes and Figure 4.4 shows

the corresponding variation of Ψ2 in outer coordinates. To better extract the range

of validity for the log law, the value of κ used to evaluate Ψ1 and Ψ2 for each profile is

the one determined from regression fit within the range 1000 < y+ < 0.1Reτ for that

particular profile. In all smooth cases, the regression fit value was κ = 0.397± 0.001

and for rough wall cases κ = 0.383±0.002, all of which are consistent with the overall

uncertainty range κ = 0.40± 0.02 found in Chapter 3.3.

In Figure 4.3a, the lower bound of the logarithmically scaled region appears at

y+ ≈ 800 with the upper bound at y/R ≈ 0.15 as illustrated in Figure 4.4a. As shown

in Figure 4.4b, this upper bound describes the upper limit of the logarithmically-scaled

region for the rough-walled cases as well. However, Figure 4.3b, indicates that the
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Figure 4.3: The function Ψ1 defined by Equation (4.2.2) for the three highest Reτ
smooth-wall cases in (a) and rough-wall cases in (b). Symbols as in Figure 4.1 and
indicated in Table 3.1.

lower limit for the rough-walled cases is not fixed in inner units and instead appearing

fixed at y/krms ≈ 260 (y/R ≈ 0.02) as shown in Figure 4.4b. Given that the upper

extent of the roughness sublayer can be expected to be driven by the inertial eddies

introduced by the roughness elements, it is perhaps not surprising that the lower

limit scales with krms rather than ν/uτ . The value of 260, however, greatly exceeds

the expected extent of the roughness sublayer (2-5krms) described by Raupach et al.

[1991], suggesting a much greater region of influence of roughness in the present case.

However, it should also be noted that for the roughness in the present experiment,

the parameter krms only partially describes the roughness geometry. As observed in

Langelandsvik et al. [2007], the surface features for this roughness have spanwise and

streamwise scales of dimensions much greater than krms. Furthermore, considering

that viscous effects for the smooth pipe are noticeable up to y+ = 800, or 160 times

the viscous sublayer thickness, it is not unlikely that the roughness sublayer of the

rough pipe has an equivalent ratio for its region of influence.
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Figure 4.4: The function Ψ2 defined by Equation (4.2.3) for the three highest Reτ
smooth-wall cases in (a) and rough-wall cases in (b). Symbols as in Figure 4.1 and
indicated in Table 3.1.

4.3 Streamwise Reynolds stress

Profiles of the streamwise Reynolds stress u2+ for the smooth and rough-wall pipes

at all Reynolds numbers are shown in Figure 4.5a-b.

It is important to consider spatial filtering effects to assure that the data has been

sufficiently resolved. Table 3.1 shows that the requirement ℓ+ < 4 is only met at

the lowest two Reynolds numbers even with the NSTAP, and the maximum value

of ℓ+ was 46 for the smooth case and 93 for the rough case at Reτ = 1 × 105.

To compensate for spatial filtering effects in the smooth wall data, the correction

proposed by Smits et al. [2011b] was applied in Chapter 3.4. For the rough wall data,

the effects of spatial filtering are potentially more severe, but the correction proposed

by Smits et al. [2011b] has not been validated for measurements over rough walls.

In general the spatial filtering effects are mostly confined to the near-wall region

(y+ < 200) leaving the logarithmic and wake regions essentially unaffected.

As discussed in Chapter 3.4 for the smooth-wall cases, the Superpipe results pro-

vide strong support the existence of logarithmic scaling of the streamwise turbulence

component within the overlap layer. To illustrate this result, the streamwise Reynolds
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Figure 4.5: Inner scaled streamwise Reynolds stress profiles in the (a) smooth pipe
and (b) rough pipe. The same profiles corrected for spatial filtering effects following
Smits et al. [2011b] are shown in (c) and (d) respectively. Symbols as in Figure 4.1
and indicated in Table 3.1.

stress results are shown in Figure 4.6a using outer scaling, displaying only the results

for y+ > 100 and at the four highest Reynolds numbers, where F is negligible in

Equation (3.4.2). The corresponding rough-wall results are given in Figure 4.6b. The

outer peak is readily apparent as an unambiguous feature of both smooth and rough

pipe flows, and it seems to be particularly well delineated in the rough wall cases.

However, unlike the smooth-walled cases, which have a Reynolds number dependent

location, as noted in Chapter 3.4, the outer peak appears to be at a fixed location

of y/krms = 100 (y/R = 0.008), at least for the three highest Reynolds numbers.

These figures also highlight the emergence of a logarithmic region for u2+ in both

smooth and rough-wall flows. A regression fit of the data between y+ = 800 and

y/R = 0.15 returns A1 = 1.24± 0.06 and B1 = 1.48± 0.15 for the smooth-wall cases,

and A1 = 1.25± 0.05 and B1 = 1.55± 0.21 for the rough-wall cases.

To better examine the range of applicability of this logarithmic scaling we define
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Figure 4.6: Outer scaled streamwise Reynolds stress profiles of four highest Reynolds
numbers of (a) smooth and (b) rough-wall data sets. Symbols as in Figure 4.1 and
indicated in Table 3.1, with solid line indicating Equation (3.4.1) and constants A1 =
1.24 and B1 = 1.48.

a function

Ψ3 = u2+ + A1 log
y

R
− B1. (4.3.1)

Figure 4.7 displays Ψ3 as a function of inner and outer scaling for the smooth-wall

(Figure 4.7a-b) and rough-wall cases (Figure 4.7c-d). We see that for the smooth-

wall case, within data scatter, the streamwise Reynolds stress follows logarithmic

scaling over the the same range where the mean flow displays logarithmic scaling of

800 < y+ < 0.15Reτ . For the rough-wall case, the upper limit for the logarithmic

region appears at y/R = 0.15, with the lower limit scaling with krms (or R) rather

than ν/uτ , as in the case of the mean flow. The lower limit appears at y/krms = 260

(y/R = 0.02) with a consistent deviation below logarithmic scaling between y/krms =

100 and 260 for all rough-wall cases. For the rough-wall pipe flow at sufficiently high

Reynolds number, these results indicate that the Reynolds stress obeys outer scaling

for y/krms > 260, and there is an overlap between inner and outer scaling between
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Figure 4.7: Function Ψ3 defined by Equation (4.3.1). Smooth wall: the three highest
Reynolds numbers in (a) outer scaling, (b) inner scaling. Rough wall: the three highest
Reynolds numbers in (c) outer scaling, (d) inner scaling. Symbols as in Figure 4.1
and indicated in Table 3.1. The vertical dashed lines in (a) and (b) mark the location
where y/R = 0.15, and y+ = 800 respectively. In (c) the vertical dashed lines indicate
the locations where y/krms > 260 and y/R > 0.15.

y/krms = 260 and y/R = 0.15.

The mean velocity and the streamwise Reynolds stress distributions are shown

together in Figure 4.8, where the wall-normal locations corresponding to the upper

and lower limits of the logarithmic mean velocity and Reynolds stress variation are

marked by dashed lines. We see that the mean velocity and the turbulence intensity

display their respective logarithmic variations over essentially the same range of wall

normal distances. This duality occurs for the smooth and rough wall experiments.

We have seen that the mean velocity and the streamwise turbulence intensity

each display a logarithmic behavior over the same spatial extent, in both smooth and

rough-wall flows. In this region, an outer-scaled log-law must also be valid for the

mean velocity,

U+
cl − U+ = −1

κ
ln
y

R
+ B∗, (4.3.2)
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Figure 4.8: Comparison of mean (hollow symbols) and streamwise Reynolds stress
(solid symbols) profiles for: (a) smooth-wall pipe at Reτ = 38 × 103; (b) rough-wall
pipe at Reτ = 37× 103; (c) smooth-wall pipe at Reτ = 68× 103; (d) rough-wall pipe
at Reτ = 69× 103; (e) smooth-wall pipe at Reτ = 98× 103; and (f) rough-wall pipe
at Reτ = 101×103. The solid lines represent Equation (4.2.1) and (3.4.1) and dashed
lines indicate their region of validity.
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where U+
cl is the inner-scaled mean centerline velocity and B∗ is another empirical

constant, found here to be approximately 1.0. Equation (4.3.2) and (3.4.1) yield

u+
2
= B1 − A1κB

∗ + A1κ
(

U+
cl − U+

)

(4.3.3)

That is, the variance in the logarithmic region should be a linear function of the

velocity defect, which removes uncertainty due to ∆U+, with the further advantage

that any uncertainty in the wall position will be eliminated because the fluctuations

and the mean are measured at the same point∗. This result is plotted in Figure 4.9,

for y+ > 100. And it is clear that the data follow this linear variation u2+ ∼ U+,

particularly for the three highest Reynolds numbers where the viscous damping term

of Equation (3.4.2) is negligible. This result contradicts conventional eddy viscosity

or mixing length arguments, where the stresses are related to velocity gradients (u2 ∼

(∂U/∂y)2) not velocity U itself.

4.4 Higher order moments of streamwise velocity

The Reynolds stress describes only the second central moment of velocity, and it is

also interesting to explore the behavior of the higher order moments, especially the

third and fourth order central moments, u3+ = u3/u3τ and u4+ = u4/u4τ , respectively.

Morrison et al. [2004] found no evidence of scaling of the higher order moments but

their results were potentially dominated by spatial filtering effects and, as observed

by Bailey et al. [2010], spatial filtering effects are amplified with increasing order of

moment. Although the NSTAP offers an improvement over conventional hot-wires,

for the majority of the Reynolds numbers measured ℓ+ > 4 and therefore the effects

of spatial resolution cannot be neglected on the higher order moments. Hence, we

limit the analysis to wall-normal locations where the spatial filtering correction of

∗This presentation was suggested to us by P. H. Alfredsson of KTH.
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Figure 4.9: Cross plot of streamwise Reynolds stress and mean velocity data for (a)
smooth and (b) rough-wall data sets, for the four highest Reynolds numbers and
y+ > 100. Symbols as in Figure 4.1 and indicated in Table 3.1, with solid line
indicating Equation (4.3.3). Symbols as in Figure 4.1.

Smits et al. [2011b] predicts attenuation of u2+ to less than 3%.

The skewness and flatness profiles are shown for the three highest Reynolds num-

bers in Figure 4.10 for y+ > 100 using outer coordinates. At these high Reynolds

numbers, the results depend only weakly on Reynolds number and roughness effects.

Although the flatness remains approximately constant at 2.7 throughout the logarith-

mic layer, slightly below the Gaussian value, the skewness varies over the same range

of y/R, and it does not appear that the pipe flow results follow the same self-similar

behavior in the logarithmically scaled region observed in turbulent boundary layers

[Tsuji et al., 2005].

We will return to the skewness after considering the scaling of u4+. For a Gaussian

distribution, we expect that the flatness is equal to 3, so that u2+ = (u4+/3)0.5. We

see from Figure 4.10 that the flatness in the logarithmic region is close to Gaussian

at a value of about 2.7, so we explore the wall-normal dependence of (u4+)0.5 (see
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Figure 4.10: Profiles of skewness from the (a) smooth- and (b) rough-walled pipes
in outer coordinates for the three highest Reynolds numbers. Corresponding flatness
profiles shown in (c) and (d) for smooth-walled and rough-walled pipes respectively.
Only data points above y+ = 100 shown for clarity. Symbols as in Figure 4.1 and
indicated in Table 3.1.

108



www.manaraa.com

10
−3

10
−2

10
−1

10
0

0

2

4

6

8

10

12

14

y/R

(

u
4
+
)

0
.5

10
−3

10
−2

10
−1

10
0

y/R

(a) (b)

Figure 4.11: Profiles of (u4+)0.5 from the (a) smooth- and (b) rough-walled pipes in
outer coordinates. Symbols as in Figure 4.1 and indicated in Table 3.1, with data
points below y+ = 800 for the smooth-walled flow and y/krms = 260 for the rough-
walled flow indicated using black symbols. For clarity, only the four highest Reynolds
numbers are shown and only for y+ > 100. Solid line is Equation (4.4.1).

also Meneveau and Marusic [2013]). Figure 4.11 shows that there is strong evidence

for the existence of a logarithmically scaled region in (u4+)0.5 over the same Reynolds

number range where logarithmic scaling is evident in u2+, closely following

(u4+)0.5 = D1 − C1 log
[ y

R

]

(4.4.1)

with D1 = 2.78±0.46 and C1 = 1.98±0.16 for the smooth pipe and D1 = 2.83±0.25

and C1 = 2.00±0.06 for the rough pipe. Note that for the smooth wall, B1

√
3 = 2.6 ≈

D1, and A1

√
3 = 2.17 ≈ C1, as expected if the p.d.f. followed a normal distribution

(we obtain 2.73 and 2.05 if instead we use 2.7, the measured value of the flatness).

Similar results are found for the rough wall experiments.

Figure 4.11 also indicates that, for sufficiently high Reτ , this logarithmic region

extends over the same range of wall distance as for the mean velocity and Reynolds
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stress. To illustrate this point, the data points that lie below the lower logarithmic

limits have been indicated in Figure 4.11 using solid symbols. It therefore appears that

the logarithmic scaling extends beyond the second moment due to the near-normality

of the velocity p.d.f. in the log layer.

Returning to the skewness behavior, Mathis et al. [2009] noted that there is an

indication that the skewness reflects modulation of the near wall flow by outer-scaled

eddies. Similarly, the lack of scaling in the even moments within the logarithmic

region at lower Reynolds numbers may indicate a significant interaction between the

outer-scaled and inner-scaled eddies due to insufficient scale separation. Interestingly,

once a logarithmically scaled region forms, comparison of Figures 4.10 and 4.11 reveals

that the location where the outer peak forms at high Reτ closely corresponds to the

location where u3+ = 0. Hence, it would appear that the outer peak is related

to the modulation of the near-wall flow. We also note that, although potentially

attributable to experimental uncertainty, the weak Reynolds number dependence in

u3+ in the outer and logarithmic layers suggests that complete similarity does not

exist.

4.5 Conclusions

Measurements of the streamwise component of the velocity in fully-developed pipe

flow for two pipes with different surface roughness conditions were analyzed; one

machined to provide a hydraulically smooth surface and the other consisting of a

commercial steel pipe with irregular elements of small relative roughness.

A strong duality between the scaling of the mean velocity profile and the turbu-

lence fluctuations was observed, with an inner-scaled region extending to y+ ≈ 50

occupying the same span as the combination of the viscous sublayer and the buffer

region in the mean velocity profile. A wake region in the turbulence intensity scales
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with y/R and extends outwards from y/R > 0.15, similar to that of the mean flow.

More interestingly, a logarithmic behavior of the streamwise Reynolds stress under

hydraulically smooth, transitionally rough, and fully rough conditions was observed

for Reynolds numbers higher than Reτ > 20 × 103, in a region corresponding to the

logarithmic scaling in the mean flow. This extends the results shown in Chapter 3.4

to include transitionally rough and fully rough flows. In addition, in this region of

logarithmic scaling, the streamwise turbulence intensity scales with the mean velocity

defect, which contradicts conventional eddy viscosity or mixing length arguments.

It was observed that the nature of the interface between the inner-scaled near-

wall region and outer-scaled logarithmic region produces a peak in the streamwise

Reynolds stress distribution, which appears at the same Reynolds number where the

logarithmic region becomes established. This confirms earlier observations in high

Reynolds number flows, where a similar outer peak has been noted. The onset of the

logarithmic region is found at a location where the wall distance is equal to ∼100

times the Kolmogorov length scale.

Additionally, higher-order statistics were investigated and it was shown that, in

the logarithmic region the square root of the fourth-order moment also displays a

logarithmic region in y/R. The behavior of higher order statistics is further discussed

in Chapter 6, where the results are also compared with high-order statistics from

turbulent boundary layer.
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Chapter 5

Turbulent boundary layer flow

5.1 Introduction

The scaling of turbulent wall-bounded flows with Reynolds number has been the

subject of considerable interest (see Chapter 1, Marusic et al. [2010c], Smits et al.

[2011a], Smits and Marusic [2013]). Boundary layers, pipe flows and channel flows

are often assumed to scale with the same variables, namely the friction velocity uτ =
√

τw/ρ and either the viscous length scale ν/uτ for the inner region of the flow, or

the boundary layer thickness δ (radius R for pipes, half height h for channels) for the

outer flow. The validity and applicability of these scaling behaviors at high Reynolds

numbers is still an open subject.

5.1.1 Mean Flow

For turbulent boundary layers at sufficiently large Reynolds numbers, one can expect

an overlap region between the inner and outer scaling of the flow, similarly to the

pipe flow discussed in Chapter 3.1. In this log-region (or turbulent wall region), the
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mean velocity U can be expected to behave logarithmically, expressed as

U+ =
1

κ
log y+ +B. (5.1.1)

In recent years, with advancing measurement techniques and facilities, high quality

measurements over a wide range of Reynolds numbers have been reported, with some

evidence showing that in different wall-bounded flows the start and extent of the log-

arithmic region, and the value of the von Kármán constant may vary. More extended

discussion on mean flow scaling is given in Chapter 3.1.

The start of the log-law region was commonly assumed to be located at y+ =

yuτ/ν = 30−50, but recent studies indicate values as high as y+ = 800 for pipe flows

(Chapter 3.4.3, Hultmark et al. [2012]) and for boundary layers, recently a Reynolds

number dependent lower limit of y+ = 3Re0.5τ was used by Marusic et al. [2013] (as a

conservative lower bound), where Reτ = uτδ/ν. As to the outer limit, values in the

literature range from y/δ = 0.08 to 0.3, Marusic et al. [2013] suggesting y/δ = 0.15.

The values of the von Kármán constant reported in the past have also varied over a

considerable range, with values as low as 0.38 in a boundary layer (Österlund et al.

[2000]) and as high as 0.42 in a pipe (McKeon et al. [2004a]). More recently, the value

of 0.38 given by Nagib and Chauhan [2008] has garnered considerable experimental

support, although the maximum Reynolds number Reτ for this data set did not

exceed 10,000. In Chapter 3.3 it was shown that there is a large error associated with

estimating the slope of the mean flow, yielding an estimate of von Kármán constant

in pipe flow with wide error bar κ = 0.40 ± 0.02 even when uτ is well known. For

boundary layers one would expect an even larger variation due to the difficulty in

estimating friction velocity.
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5.1.2 Turbulence intensities

The scaling of turbulent intensities in boundary layers has not been so widely studied.

The main reason being the difficulties in conducting experiments at high Reynolds

numbers and being able to spatially and temporally resolve the turbulent fluctuations.

Whereas many studies on turbulent boundary layers have been made, only few of

them reported Reynolds stresses with reasonable resolution at high enough Reynolds

numbers where scale separation could be expected. The most notable study was made

by DeGraaff and Eaton [2000] using Laser Doppler Anemometry to resolve all three

components of velocity instantaneously for up to Reτ ≈ 14, 000. They found that the

streamwise Reynolds stresses did not scale with u2τ even in the near-wall region and

proposed a mixed scaling with u2τ
√

Cf/2 instead. It must be noted though, that they

did not have direct measurements of wall shear stress and used Coles log law [Coles,

1956] for estimating uτ .

As already described in Chapter 3.1, Townsend [1976] and Perry et al. [1986]

suggested that logarithmic behavior in fluctuations should occur in the overlap region

if large enough scale separation is reached in the flow. This logarithmic behavior

was first observed experimentally by Hultmark et al. [2012] in pipe flow, followed

by Marusic et al. [2013] who showed this scaling also applies in boundary layers, and

Huisman et al. [2013] who showed it for turbulent Taylor-Couette flow. In the inertial

subrange the turbulent fluctuations can be described with

u2+ = B1 − A1 ln
y

δ
, (5.1.2)

where A1 is a Townsend-Perry constant and B1 is an additive constant, at least for

a fixed Reynolds number. Marusic et al. [2013] compared four different flows and

suggested A1 = 1.26 for all flows compared, where the boundary layer data studied

had a maximum Reτ ≈ 18, 000.
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In order to establish these and other parameters more precisely, it is necessary

to obtain high quality and high resolution experimental data over a very large range

of Reynolds numbers. At Princeton, we have the facilities and the instrumentation

to make these measurements possible. Here we describe well resolved turbulent zero

pressure gradient boundary layer measurements at 2,600< Reτ <72,000.

5.2 Experimental methods

5.2.1 Experimental Facility

The boundary layer measurements were conducted in the High Reynolds Number

Test Facility (HRTF) at Princeton University Gas Dynamics Laboratory (shown in

Figure 5.1(a)). It is a closed-loop wind tunnel with air as the working fluid that

can be compressed up to 220 atm, thus decreasing the kinematic viscosity and there-

fore allowing to achieve and study a wide range of Reynolds numbers in laboratory

conditions. The wind tunnel has a maximum speed of 12 m/s and freestream turbu-

lence intensity levels between 0.3− 0.6%. The tunnel has two working sections, each

2.44 m long with a 0.61 m outer and 0.49 m inner diameter. The sketch of the tunnel

is shown in Figure 5.1(b) and the tunnel itself has been described in further detail by

Jiménez et al. [2010].

A 2.06 m flat plate model with an elliptic leading edge was mounted in the down-

stream test section of the wind tunnel. A 1 mm square trip wire, located at 76 mm

from the leading edge, was used to trip the boundary layer and the measurement

station was located 1.82 m downstream of the trip wire. The schematic of the setup

is shown in Figure 5.1(c). The aluminum surface of the plate was carefully polished to

a mirror finish. The surface roughness was estimated using an optical microscope and

comparator plates and found to be less than 0.15µm, corresponding to k+rms < 0.4

at the highest Reynolds number studied. Therefore all experiments reported here
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Figure 5.1: The Princeton High Reynolds Number Test Facility (HRTF). a) Photo of
the facility, b) sketch of the tunnel, c) sketch of the boundary layer setup, d) image
of the probe holder with an NSTAP and Pitot probe.

pertain to a hydraulically smooth surface.

The pressure distribution in the circular test section was adjusted using a “blister”

insert attached to the tunnel wall on the opposite side of the plate, as shown in

Figure 5.1(c). The pressure distribution was measured using 18 streamwise and 15

spanwise pressure taps, and the insert was adjusted to minimize the pressure gradient.

The local streamwise pressure gradient parameter (or acceleration parameter) Kp =

ν
U2
∞

dU∞

dx
= ν

ρu3
τ

dp
dx

was found to be always smaller than 1×10−8, as shown in Figure 5.2.

This value is an order of magnitude smaller than that reported in some previous

studies (for example DeGraaff and Eaton [2000] reported Kp < 1.1 × 10−7), and

therefore this flow is considered to be free of pressure gradient effects.

5.2.2 NSTAP measurements

In the current study, two Nano-Scale Thermal Anemometry Probes (described in

Chapter 2) were used, one with filament length ℓ = 60µm and cross-section 0.1×2µm
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Figure 5.2: The pressure gradient parameter Kp for all Reynolds numbers studied
varying with upstream location x.

and second one with ℓ = 30µm and 0.08 × 1.5µm cross-section. An image of a

representative 30µm probe of the design used is shown in Figure 2.7.

The sensors were operated using a Dantec Streamline Constant Temperature

Anemometry system with a 1:1 bridge, keeping the heated filament at a tempera-

ture of about 450 K. The frequency response, determined from a square wave test,

was always above 150 kHz in still air, which increased to more than 300 kHz at the

highest Reynolds number. The data were low-pass filtered using an eighth-order But-

terworth filter at 150 kHz and digitized using a 16-bit A/D board (NI PCI-6123) at

a rate of 300 kHz. The sensor was traversed in wall-normal direction y using a step-

per motor traverse with a Numeric Jena LIK22 encoder resolution of 0.05 µm (the

NSTAP sensor with probe holder is shown in Figure 5.1). The initial wall-normal

distance y0 of the NSTAP probe was measured using a depth measuring microscope

(Titan Tool Supply Inc.) which provided accuracy of 5 µm.

The NSTAP was calibrated using the pressure difference between a 0.4 mm Pitot
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tube and two 0.4 mm static pressure taps located in the pipe wall at the same stream-

wise location. The Pitot tube measurements were corrected for static tap Reynolds

number effects with the correlation proposed by McKeon and Smits [2002] and for

viscous effects using the correlation identified by McKeon et al. [2003]. The ambient

fluid temperature change during a given profile ranged from 0.7◦ C to 10.0◦ C over

the full Reynolds number range, and the data were corrected using the temperature

correction outlined by Hultmark and Smits [2010].

For calibration, the Pitot probe was positioned above the NSTAP (similar to the

pipe setup shown in Figure 3.1(C)) and the probes were then positioned in the free

stream 45 mm above the surface, well above the height of boundary layer thickness δ.

For all pressure measurements, sufficient time was given for the pressure within the

pressure tubing to reach a steady state, and long averaging times were used to min-

imize the effects of transients on the average. Then, 14 calibration points were used

before and after each profile measurement and a fourth order polynomial fit was used

to find the calibration coefficients.

Data were acquired for 3 × 103 < Reτ < 73 × 103, corresponding to 8.4 × 103 <

Reθ < 235× 103 (where Reθ = U∞θ/ν is the Reynolds number based on momentum

thickness θ). The tunnel was pressurized for all cases and the experimental conditions

using NSTAP are listed in Table 5.1 (cases 1-7). Here, pa is the ambient pressure, and

y0 is the initial distance from the wall. The values of uτ used in this table are those

derived using the skin friction correlation proposed by Fernholz and Finley [1996].

The spatial resolution of the sensor is shown in viscous units as ℓ+ in Table 5.1,

demonstrating the extent of spatial resolution achieved at these very high Reynolds

numbers. It can be seen that NSTAP size is comparable to the viscous scales at the

lowest Reynolds number case, but at the highest Reynolds number even the miniature

NSTAP probe cannot resolve turbulence down to the viscous scales. Therefore the

spatial filtering correction by Smits et al. [2011b] was used for turbulence fluctuations
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u2+, unless noted otherwise.

5.2.3 Pitot measurements

In addition to the NSTAP, a Pitot probe was also used to measure the mean velocity

profiles. A Pitot probe with diameter dp =0.20 mm, in conjunction with two 0.4 mm

static pressure taps in the plate, was used. The pressure difference was measured using

a DP15 Validyne pressure transducer with a 1.40 kPa range which was calibrated

against a liquid manometer. The initial wall distance y0 of the Pitot probe was

measured using a depth measuring optical microscope and the probe was traversed in

wall-normal direction y using a stepper motor traverse, as described in Chapter 5.2.2.

The Pitot measurements were corrected following Bailey et al. [2013] using the

static tap correction (outlined by McKeon et al. [2003]), viscous and shear correc-

tions following Zagarola and Smits [1998] and the near-wall correction proposed by

MacMillan [1957]. The data for wall distances smaller than two Pitot tube diame-

ters were neglected in calculations, in order to avoid possible biases introduced by the

Pitot correction methods and wall distance determination, similar to pipe experiments

described in Chapter 3.2.3.

Measurements were taken for 2.8 × 103 < Reτ < 65 × 103, corresponding to

9.4 × 103 < Reθ < 223 × 103. The experimental conditions for all cases are given in

Table 5.1 (cases 8-14).

5.2.4 Friction Velocity

Finding the friction velocity uτ in boundary layer flows is always difficult as there

is no simple way to obtain a direct measurement. Here, we find uτ by estimating

the skin friction coefficient Cf = 2u2τ/U
2
∞ using different methods to determine the

uncertainty bounds.

First, measurements using the 0.2 mm Pitot probe as a Preston tube were used
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Case Sensor Reθ Reτ pa [atm] U∞
ν
uτ

[µm] ℓ or dp [µm] ℓ+ or d+p y0 [µm] y+0 Symbol

1 NSTAP 8.4× 103 2,622 4.4 9.08 10 60 5.8 40 3.9 H
2 NSTAP 15.1× 103 4,635 8.1 9.21 5.9 60 10 40 6.8 �

3 NSTAP 26.9× 103 8,261 15 9.29 3.4 60 17 40 12 N
4 NSTAP 46.7× 103 14,717 30 9.33 1.8 60 33 40 22 ◮
5 NSTAP 80.6× 103 25,062 57 9.46 1.0 30 29 20 19 �
6 NSTAP 113× 103 40,053 105 9.50 0.6 30 47 20 31 ◭
7 NSTAP 235× 103 72,526 213 9.55 0.4 30 75 20 50 •
8 Pitot 9.4× 103 2,841 4.4 9.40 10 200 20 130 13
9 Pitot 16.0× 103 4,835 8.0 9.51 5.9 200 34 130 22
10 Pitot 28.4× 103 8,622 15 9.61 3.4 200 59 130 38
11 Pitot 50.7× 103 15,256 28 9.64 1.8 200 109 130 70
12 Pitot 90.6× 103 26,609 57 9.53 1.0 200 197 130 126
13 Pitot 147× 103 43,481 107 9.58 0.6 200 329 130 211
14 Pitot 223× 103 65,129 214 9.55 0.4 200 506 130 324

Table 5.1: Experimental conditions of NSTAP and Pitot measurements in HRTF. Cases 1 to 7 were taken using the NSTAP
with sensor length ℓ, and Cases 8 to 14 were taken using the Pitot probe with diameter dp.
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Figure 5.3: Skin friction coefficient Cf : ◦, Preston tube; �, Clauser fit for Pitot
data sets; �, Clauser fit for NSTAP data sets Clauser [1956]; ∗, DeGraaff and Eaton
[2000]; solid line, Fernholz and Finley [1996]; dashed line, Gaudet and Winter [1973].
Error bars indicate ±5%.

to estimate the skin friction (Patel [1965], Zagarola et al. [2001]). Second, a Clauser

chart technique [Clauser, 1956] was used to estimate Cf from mean profiles of both

sensors, where the log-law (with κ = 0.40 and B = 5.1 Coles [1956]) was fitted

to the velocity profiles for 200ν/uτ < y < 0.15δ for the NSTAP and Pitot tube

mean velocity profiles. These results are compared in Figure 5.3 to the skin friction

correlation proposed by Fernholz and Finley [1996] and data from one of the few high

Reynolds number direct measurements of skin friction using a drag plate, reported by

Gaudet and Winter [1973]. For comparisson, values from DeGraaff and Eaton [2000]

found using the Clauser chart fit are also shown. All the different estimates lie within

5%, except the values from the Preston tube showing a larger variation.

To evaluate the effect of the constants chosen for Clauser chart method on the

magnitude of friction velocity, four different sets of constants were used to estimate

uτ . The sets chosen were κ = 0.40, B = 5.1 [Coles, 1956]; κ = 0.38, B = 4.1
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Figure 5.4: Friction velocity for NSTAP data, (a) absolute values of uτ and (b)
relative difference from Fernholz relation uτ,F . ⋄, Fernholz relation; �, Clauser chart
with κ = 0.40, B = 5.1 [Coles, 1956]; ▽ Clauser chart with κ = 0.38, B = 4.1
[Österlund et al., 2000]; ⊳, Clauser chart with κ = 0.39, B = 4.3 [Marusic et al.,
2013]; ⊲, Clauser chart with κ = 0.41, B = 5.0 [Huffman and Bradshaw, 1972].

[Österlund et al., 2000]; κ = 0.39, B = 4.3 [Marusic et al., 2013]; and κ = 0.41, B =

5.0 [Huffman and Bradshaw, 1972], and the resulting values of uτ are shown in Fig-

ure 5.4. The overall trends are similar between the different estimates, and from

Figure 5.4(b) it can be seen that the Coles constants (used throughout this disserta-

tion for mean profile analysis) give an estimate within 5% compared to the Fernholz

relation.

In light of this level of agreement among the different estimates of Cf , the value

from the Fernholz correlation is used for finding friction velocity uτ for all subsequent

data analysis. It must be noted that these indirect methods all depend in one way

or another to the presence of a logarithmic layer with fixed and pre-chosen values for

the von Kármán constant, and therefore no definitive conclusions can be made about

the logarithmic behavior based on the experiments reported here.
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5.3 Mean flow and turbulence intensities

5.3.1 Mean flow and bulk properties

The mean velocity profiles from the NSTAP and Pitot measurements are shown and

compared in Figure 5.5 in inner variables. Good collapse of the profiles can be seen

in Figure 5.5(a) from the linear region at the wall (where y+ = U+, shown as a solid

line) throughout the near-wall region. The logarithmic region is evident for all cases,

though only for a very small region at the lowest Reynolds number. In order to better

show the comparison between the profiles, Figure 5.5(b) shows each profile shifted by

a constant factor of ∆U+ = 5. The data show an excellent agreement between the

profiles throughout the whole boundary layer for all Reynolds numbers.

Comparing the NSTAP and Pitot profiles showed agreement within 2% for most

of the data, which is within expected experimental error, as the uncertainty in mea-

surements of U under these experimental conditions is estimated to be as high as

2.2%. Larger differences of up to 4% occurred for Reτ = 15× 103 (Case 4) and this is

probably due to the decrease in stability of the CTA bridge as the Reynolds number is

increased. A much more stable 30µm sensor with smaller cross-section was fabricated

and used for three highest Reynolds numbers. This flexible fabrication which allows

to tailor sensors according to specific needs of the experiment demonstrates another

advantage of these novel sensors, in addition to the improved spatial and temporal

resolution.

In the outer layer of boundary layer, the flow is assumed to be independent of

viscosity and outer scales depend only on global properties of the flow. Generally the

proper outer scaling is considered to be given as the velocity deficit law

U∞ − U

Uc

= f
(y

δ

)

(5.3.1)
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Figure 5.5: Mean velocity profiles measured with NSTAP probe (symbols) and Pitot
tube (lines) in inner coordinates. Solid line shows the viscous sublayer relationship
U+ = y+ for y+ ≤ 10. a) All mean profiles in inner coordinates; b) Each mean profile
shifted by ∆U+ = 5 for clarity. Symbols as indicated in Table 5.1.
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introduced by Clauser [1956], where outer characteristic velocity was given as Uc = uτ .

Here, the friction velocity is considered to only play a role to match the inner and

outer layer velocity. All mean velocity deficit profiles scaled with δ and uτ are shown

in Figure 5.6(a) and a reasonable agreement can be seen. An alternative scaling,

only depending on bulk parameters, was suggested by Zagarola and Smits [1998] who

showed that for pipe flow Uc = Ucl − 〈U〉 was a more appropriate scaling parameter

(Ucl is center-line velocity in pipe and 〈U〉 is the bulk velocity). Zagarola and Smits

[1998] also extended this scaling argument to boundary layers, where outer velocity

scale Uc is proportional to the mass flux deficit in the boundary layer

u0 = U∞

∫ 1

0

(

1− U

U∞

)

d
(y

δ

)

=
δ∗

δ
U∞, (5.3.2)

where δ∗ =
∫ δ

0

(

1− U
U∞

)

dy is the displacement thickness. In Figure 5.6(b) all mean

velocity profiles are shown with this alternative outer scaling and a significantly better

collapse of profiles can be noted. In turbulent pipe, the flow is driven by a pressure

gradient that is inherently connected to the skin friction and therefore it is reasonable

to assume the outer flow to scale with uτ . On the other hand, in boundary layers there

is no such connection between the outer flow and the skin friction, and one would

expect the outer flow to have no specific dependence on the wall friction. Therefore

there is no fundamental reason to expect the outer part of the mean profiles to scale

with uτ . Additionally, an advantage of this u0 scaling is that it does not require

any skin friction estimate, which could introduce a large error bar. Upon a closer

inspection of Figure 5.6(a), it can be seen that the Pitot profiles seem always to be

slightly higher than the NSTAP profiles, and this disagreement (probably due to the

uncertainty in Cf ) is eliminated by using u0 as a scaling parameter. Therefore it is

suggested that the scaling proposed by Zagarola and Smits [1998] serves as a more

general outer scaling (with less uncertainty) for the mean flow in boundary layers,
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especially at lower Reynolds numbers.

Table 5.2 lists the boundary layer thickness δ = δ99, as well as the displacement

thickness δ∗, the momentum thickness θ =
∫ δ

0
U
U∞

(

1− U
U∞

)

dy, and the shape factor

H = δ∗/θ for each case. For estimating δ∗ and θ, trapezoidal integration was used

and the near-wall region was interpolated using lower Reynolds number cases that

cover full near-wall region. Figure 5.7 shows the bulk properties from the current

experiment. For comparison, the data from DeGraaff and Eaton [2000], the functions

suggested by Coles [1956] (with log-law constants κ=0.40 and B=5.1, as used by

Coles [1956]) and the asymptotic values θ/δ = 0.0767, δ∗/δ = 0.0894 and H = 1.17

suggested by George and Castillo [1997], are also shown. The experimental values

of DeGraaff and Eaton [2000] agree well with the current data (where the NSTAP

and Pitot data are in good agreement). The functions suggested by Coles [1956] are

very sensitive to the chosen log law constants and the wake function. Even though

all the trends are similar, some significant differences can be seen among the values,

especially for the shape factor H. Additionally it can be seen that the values are

decreasing with Reynolds number and are still far from the asymptotes suggested by

George and Castillo [1997].

In order to visualize the extent of the logarithmic layer in the profiles we use the

parameter Ψ1, where

Ψ1 = U+ − 1

κ
ln y+ − B. (5.3.3)

In the region where the log law should apply, plotting Ψ1 against the wall-normal

positions a horizontal line should be evident, assuming that reasonable κ was chosen

(throughout this dissertation κ = 0.40 and B = 5.1 are used). In Figures 5.8(a) and

5.8(b) this function is shown in inner and outer wall coordinates, respectively, with

each Reynolds number shifted by ∆Φ = 2, and dashed lines indicating the respective

zero values for each Reynolds number. From Figure 5.8 it is clear that the outer limit

of the logarithmic layer agrees well with y/δ = 0.15, which is also indicated on the
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Figure 5.6: Mean velocity profiles measured with NSTAP probe (symbols) and Pitot
tube (lines). a) All mean profiles in outer coordinates, where U is scaled with uτ ; b)
All mean profiles in outer coordinates, where U is scaled with u0 = δ∗

δ
U∞. Symbols

as indicated in Table 5.1.
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Figure 5.7: Bulk properties with varying Reynolds number. ◦, Pitot data; �, NSTAP
data; ∗, DeGraaff and Eaton [2000]; solid line, Coles [1956]; dashed line, asymptotic
value from George and Castillo [1997].
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Table 5.2: Bulk properties. All dimensional quantities are given in mm.

Case δ [mm] δ∗ [mm] θ [mm] H Cf × 103

1 27.2 4.24 3.15 1.34 2.62
2 27.3 4.01 3.06 1.31 2.36
3 28.4 3.89 3.02 1.29 2.14
4 27.0 3.38 2.68 1.26 1.96
5 25.7 3.09 2.49 1.24 1.80
6 25.8 3.06 2.48 1.24 1.68
7 29.1 3.20 2.62 1.22 1.55
8 28.7 4.59 3.39 1.35 2.57
9 28.6 4.26 3.23 1.32 2.33
10 29.1 4.05 3.13 1.29 2.12
11 28.1 3.69 2.90 1.27 1.94
12 27.0 3.44 2.73 1.26 1.77
13 26.5 3.21 2.58 1.24 1.65
14 25.7 3.04 2.46 1.23 1.56

plots with the error bar locations.

All profiles are slightly curved near the wall, which could indicate the presence of

a mesolayer with a power law like behavior as found in pipe flow by McKeon et al.

[2004a]. NSTAP data indicates log-region anywhere above y+ = 100 or even lower

whereas pitot data does not resolve such near-wall region for higher cases. y+ =

3Re0.5τ suggested by Marusic et al. [2013] as a conservative inner bound for fitting

profiles (and the middle of log-region) is denoted with inner error bars in Figure 5.8.

Unfortunately this inner region is very close to the wall in physical coordinates and

could be affected by uncertainties in the measurements near the wall therefore we can

make no final conclusions on the inner limit of the logarithmic layer. Nevertheless it

is clear that a much lower inner limit can be observed than found at similar Reynolds

numbers in pipe flow (y+min = 600−800 seen in McKeon et al. [2004a], Hultmark et al.

[2013]).
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Figure 5.8: Parameter Ψ1 in a) inner coordinates and b) outer coordinates. Profiles
have been shifted by ∆Ψ1 = 2 for clarity, error bars of 2.2% U are shown at locations
y+ > 3Re0.5τ and y/δ = 0.15. Symbols as indicated in Table 5.1.
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5.3.2 Streamwise Reynolds stresses

The great advantage of using NSTAPs for velocity measurements is their superior

spatial and temporal resolution (Table 5.1 lists the sensor length in viscous units ℓ+).

At lower Reynolds number, all viscous time and length scales can be expected to be

resolved, but for higher Reynolds numbers even NSTAP measurements suffer from

spatial filtering effects, with ℓ increasing up to 75 times the viscous length. Therefore

u2+ has been corrected using the spatial filtering correction introduced by Smits et al.

[2011b], which has been shown to work well in many different wall-bounded flows. The

correction has less than 1% effect on most of the flow, but becomes more significant

near the wall, so that at y+ = 100 the correction is already 3%, 5% and 10% for the

three highest Reynolds numbers.

In addition to spatial filtering, there are other uncertainties introduced near the

wall, such as the uncertainty in initial wall location y0 (about 5µm), the calibra-

tion sensitivity due to low mean velocity, possible asymmetrical temperature profiles

around the sensor, to name a few.

Profiles of the streamwise turbulent stress u2+ are shown in inner and outer coor-

dinates in Figure 5.9. A good agreement between the profiles is seen near the wall,

with a peak near y+ ≈ 15, as expected. The inner peak values for the three lowest

Reτ are u2+I = [8.3; 8.1; 7.7]. After applying the spatial filtering correction suggested

by Smits et al. [2011b], all values collapse to u2+I = 8.44 ± 0.02. So the available

data show no Reynolds number trend in the inner peak value for turbulent boundary

layers for 3, 000 ≤ Reτ ≤ 10, 000. However, only the three lowest Reynolds number

cases can be measured at such small y+, so less than a decade in Reτ is covered.

At the same time, in near-wall region the errors increase (wall-distance, calibration

sensitivity at low U , etc). Therefore if peak is increasing logarithmically with Re,

this could be simply masked by experimental error.

The outer region shows a clear variation with Reτ , and a Reynolds number de-
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Figure 5.9: Streamwise turbulent stress u2+ profiles in inner coordinates. Symbols as
indicated in Table 5.1.

pendent second peak emerges for higher Reynolds numbers. The value of streamwise

Reynolds stress at the outer peak u2+II , that is where the profile starts to decay log-

arithmically, was found for each Reynolds number (for the three lowest cases there

is no peak, but just a shoulder, so an inflection point was used to estimate the peak

value). These values are shown in Figure 5.10, together with the values from the

pipe flow in Chapter 3.4, and it can be seen that the magnitudes of the outer peaks

are very similar in these two flows. The data where a genuine peak can be observed,

indicating where u2+ starts to decay (for Reτ > 20, 000), is shown with filled symbols

in Figure 5.10. It was found that the peak magnitudes follow u2+II = 0.49 ln(Reτ )+1.7

in pipe and u2+II = 0.47 ln(Reτ )+2.0 in boundary layer and these fits are very similar,

suggesting a similar behavior of u2+II in these two flows. The location of the peaks is

discussed in Chapter 7.3.4.

Recently, Pullin et al. [2013] proposed an analysis suggesting a logarithmic in-

crease in the outer peak value u2+II with two possible relations: u2+II = 0.42 ln(Reτ ) +

2.82 and u2+II = 0.63 ln(Reτ ) + 0.33 (depending on the relation governing the location
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Figure 5.10: Magnitudes of the outer peak in u2+ for pipe (◦) and boundary layer
(�).(Filled symbols) data for Reτ > 20, 000; (solid blue line) Best fit to pipe data as
u2+II = 0.49 ln(Reτ ) + 1.7; (solid red line) Best fit to boundary layer data as u2+II =
0.47 ln(Reτ ) + 2.0; (♦) data from atmospheric boundary layer [Metzger et al., 2007];
(dashed line) u2+II = 0.63 ln(Reτ ) + 0.33 from Pullin et al. [2013] and (dash-dot line)
u2+II = 0.42 ln(Reτ ) + 2.82 from Pullin et al. [2013].

of the peak) and both of these relations are shown in Figure 5.10. The relations sug-

gested by Pullin et al. [2013] agree well with the magnitude of the peaks, as well as

the curve fit, supporting the hypothesis that the turbulence is asymptotically atten-

uated when approaching infinite Reynolds number. This means that with increasing

Reynolds number the locations of the inner peak (at constant y+) and the outer peak

(varying as ln(Reτ )) are both moving closer to the wall in physical coordinates, dimin-

ishing as Reτ → ∞ and the asymptotic state of the wall layer is slip-flow bounded by

a vortex sheet at the wall [Pullin et al., 2013]. It should be noted that if all boundary

layer cases are considered, the peak was found to follow u2+II = 0.34 + 0.63 ln(Reτ ),

which is very close to Pullin et al. [2013] relation.

Figure 5.11(a) shows all profiles of streamwise Reynolds stress in outer scaling,

y scaled with boundary layer thickness. The scaling does not collapse the profiles
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Figure 5.11: Streamwise turbulent stress u2+ profiles in outer coordinates. (a) Pro-
files for all Reτ ; (b) Profiles at Reτ > 20, 000 and y+ > 100, solid line indicating
Equation (5.1.2) with A1 = 1.24 and B1 = 1.48. Symbols as indicated in Table 5.1.

well and a clear shift with increasing Reynolds numbers can be observed, especially

at the lowest Reynolds numbers. The mixed scaling of fluctuations using uτU∞,

introduced by DeGraaff and Eaton [2000], gives a qualitatively similar collapse as the

conventional scaling, therefore the conventional scaling u2τ is used in current analysis.

At highest Reynolds numbers (Reτ > 20, 000) logarithmic behavior described by

Equation (5.1.2) can be observed starting after the outer peak in variance at about

y+ > 300. This logarithmic behavior can be seen in Figure 5.11(b), where cases for

Reτ > 20, 000 and y+ > 100 are shown only, with solid line showing Equation (5.1.2)

(with A1 = 1.24 and B1 = 1.48 from the results in pipe flow in Chapter 3.4). There

is clear logarithmic behavior, though with some variation in the additive constant, as

there is no collapse in the profiles. Similarly to the mean flow, we can introduce a

parameter Ψ3, where

Ψ3 = u2+ − A1 ln
y

δ
−B1. (5.3.4)

In the region where the log law should apply, plotting Ψ3 against the wall-normal

position should reveal a horizontal line.
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Figure 5.12: Turbulence intensities logarithmic behavior shown with Φ2 in inner
coordinates. Constants found a) in region 400 < y+ < 0.15Reτ , b) in region
3Re0.5τ < y+ < 0.3Reτ , with error bar locations indicating according limits. Sym-
bols as indicated in Table 5.1.

In Figures 5.12 and 5.13 the function Ψ3 is shown in inner and outer coordinates,

respectively. In the top plots of both figures, the constant A1 and B1 were found from

a regression fit to the data between 400 < y+ < 0.15Reτ for each case. In the bottom

plots of both figures, A1 and B1 were found from a fit to the data between 3Re0.5τ <

y+ < 0.3Reτ . The value and Reynolds number dependence of these constants is more

thoroughly discussed in Chapter 6. The inner and outer limits are indicated on the

plots with the error bar locations, where error bars indicate a ±3% variation (not

accounting for the uncertainty of estimating uτ ).

Compared to the mean flow function Ψ1 shown in Figure 5.8, there is much more

variation in the turbulent intensities, which is due to the higher uncertainty in in-

stantaneous measurements. Nevertheless, a significant region of the profiles follows

the logarithmic behavior, and for Reτ = 70, 000 it extends over about 1.7 decades in

y. Analyzing Figures 5.12 and 5.13 shows that 3Re0.5τ < y+ < 0.3Reτ provides a more
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Figure 5.13: Turbulence intensities logarithmic behavior shown with Φ2 in outer
coordinates. Constants found a) in region 400 < y+ < 0.15Reτ , b) in region
3Re0.5τ < y+ < 0.3Reτ , with error bar locations indicating according limits. Sym-
bols as indicated in Table 5.1.

flat and collapsing Ψ3 indicating that the logarithmic behavior is well determined by

these limits. This is in contrast to results in pipe flow, where a fixed inner limit of

logarithmic behavior was observed. A higher upper limit (y/δ = 0.3) is also differ-

ent from pipe flow, where an outer limit of y/δ = 0.15 was observed. This can be

explained by the different outer boundary conditions of these flows; in the pipe, u2+

sustains a constant value at the center-line, whereas in boundary layer there is first

intermittency and finally the fluctuations decrease to zero in the free-stream.

5.3.3 Logarithmic regions in the mean and the variance

In pipe flow the logarithmic regions in mean flow and fluctuations were observed to

occur in the same physical region. For boundary layer flows, profiles of U+ and u2+

are shown in Figure 5.14 for the six highest Reynolds numbers. Solid lines indicate

Equation (5.1.1) and (5.1.2), and dashed lines show the limits of the overlapping
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logarithmic region, y+ = 400 and y/δ = 0.15. Clearly, both the mean and the vari-

ances follow a logarithmic behavior within these limits, and for the mean flow the

behavior extends to much lower values of y+. This could indicate the presence of

an intermediate range below y+ = 400, which is similar to the power-law region ob-

served by McKeon et al. [2004a] in pipe flows. In this region, the mean flow follows

inner scaling, even though there is insufficient scale separation for the fluctuations to

form an overlap region as dissipative scales are not fully separated from the energy-

containing scales. This region was first introduced as a mesolayer in boundary layers

by George and Castillo [1997], who suggested that the logarithmic law in mean flow

includes a Reynolds number dependent offset, which diminishes with increasing wall-

normal distance until y+ ≈ 300, after which the true logarithmic behavior is observed.

This approach was expanded by Hultmark [2012], who proposed an alternative the-

ory for the logarithmic behavior for the streamwise Reynolds stresses in turbulent

pipe flow. The observations made here support the existence of such a mesolayer in

boundary layers, where the flow is still affected by viscosity, showing up as a decrease

in the fluctuations, similarly to pipe flow analysis by Hultmark [2012].

5.4 Conclusions

Well-resolved zero pressure gradient turbulent boundary layer measurements for 2,600<

Reτ <72,000 have been reported and analyzed. Seven different Reynolds numbers

were studied with two different experimental techniques. First, Pitot measurements

were conducted for establishing the mean behavior; then, NSTAP (with 60µm and

30µm sensors) were used to provide the temporal and spatial resolution for turbu-

lence studies. Different indirect methods for estimating the skin friction factor were

used and shown to agree within 5%. Bulk properties of Pitot and NSTAP profiles

agreed well, and followed the expected behavior, agreeing with previous experiments
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Figure 5.14: Mean profiles (empty) and turbulence intensities (filled) for cases 2-7.
(dashed lines) limits of logarithmic region y=400 and y+ = 0.15Reτ . Symbols as
indicated in Table 5.1.
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[DeGraaff and Eaton, 2000] and empirical relations [Coles, 1956].

The mean velocity profiles showed a good agreement between two measurement

techniques and an extended logarithmic region was observed. In the outer region

of the flow, the characteristic velocity u0 = δ∗

δ
U∞ proposed by Zagarola and Smits

[1998] was shown to be a more suitable scale than uτ for the mean velocity.

Streamwise Reynolds stresses were obtained with high spatial resolution (6 <

ℓ+ < 75), using NSTAP measurements. The turbulent fluctuations were found to

scale well with viscous scales near the wall, but they did not scale well with uτ in the

outer coordinates. A logarithmic region in turbulent fluctuations was observed for

Reτ ≥ 20, 000, with constants close to the ones found from pipe flow in Chapter 3.4.3.

A logarithmic behavior in variances was observed over a region 400 < y+ < 0.3Reτ ,

and it was shown that the mean and variances both show the log-behavior for 400 <

y+ < 0.15Reτ . In addition, log-like behavior in mean profiles was seen even closer to

the wall, suggesting the existence of a mesolayer, as introduced by George and Castillo

[1997].
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Chapter 6

Higher order moments in

boundary layers and pipes

6.1 Introduction

The similarity and differences between boundary layer and pipe flow at high Reynolds

numbers has always been a topic of discussion. All wall bounded flows are governed

by similar scale separation and similar scaling can be found. On the other hand,

the outer boundary conditions are different, and if fully developed pipe flow has

no streamwise gradient by definition, it is only approximately true for the boundary

layers. Here we have a unique opportunity to compare experimental results from both

of these flows at very high Reynolds numbers, using smooth pipe data from Chapter 3

together with boundary layer data described in this Chapter, both acquired with the

NSTAP. In order to make reasonable comparisons, six different cases with matching

Reynolds numbers have been chosen for comparison, and properties of all cases are

listed in Table 6.1. From here on, only these data are considered in the analysis.

For consistancy we use a single notation δ to denote the outer length scale, that is

boundary layer thickness for bondary layer data and pipe radius for pipe flow.
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Case Pipe Boundary layer
Symbol

Reτ ≈ Reτ ℓ+ Reτ ℓ+

3× 103 3,334 3.1 2,622 5.8 H
5× 103 5,412 5.0 4,635 10 �

10× 103 10,481 9.7 8,261 17 N
20× 103 20,250 18.8 25,062 29 �
40× 103 37,690 35.0 40,053 47 ◭
70× 103 68,371 31.7 72,526 75 •

Table 6.1: Cases chosen for pipe and boundary layer comparison.

Streamwise fluctuations u2+ for both flows in outer coordinates are shown in Fig-

ure 6.1. Only data for y+ > 100 have been shown for clarity and only cases where

Reτ ≥ 20, 000, that is, where a distinct logarithmic region in fluctuations occurs in

both of these flows (as shown in Chapter 3 for pipe flow). We found the constants

in Equation (5.1.2) to be independent of Reynolds number with values A1 = 1.24

and B1 = 1.48 for pipe flow and in Figures 6.1(a) and (b), Equation (5.1.2) with

these constants is shown. Later, Marusic et al. [2013] found the constants be same

for pipes and boundary layers with values A1 = 1.26 and B1 = 1.56, which equally

well fit the data. As observed previously, it is clear that boundary layer data is not

ideally collapsed by the outer scaling, but it can be seen that the magnitude as well as

the slope of logarithmic region is in good agreement with pipe flow, suggesting that

only B1 might be Reynolds number dependent. The Reynolds number dependence of

these constants will be discussed further below.

In order to further examine the similarities of these two flows, the behavior of

higher order moments is also analyzed. NSTAP measurements allow high resolution

data and also makes it possible to investigate higher order moments. Figure 6.2 shows

the probability density function P (u), and the premultiplied pdf u2pP (u), where

2p = [2, 6, 10] indicates the p’th even moment, for a representative boundary layer

case (Reτ ≈ 70, 000 at y+ = 800). For comparison, the same profiles for a Gaussian

distribution are shown with solid lines. These profiles assure the convergence of the
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Figure 6.1: Comparison of turbulent fluctuations in pipe and boundary layer in outer
coordinates for Reτ > 20, 000 and y+ > 100. Solid line shows Equation (5.1.2) with
A1 = 1.26 and B1 = 1.56 from pipe flow. Symbols as indicated in Table 6.1.

higher order moments. As discussed in Chapter 2, the frequency response of the

sensor could be lower than estimated with squarewave test. To assure accuracy of

the results, moments were also calculated from data filtered at 50 kHz. It was found

that at highest Reynolds number, the magnitude of the filtered moments differed less

than 2% from the unfiltered moments, and for lower cases the difference diminished.

As the differences were not significant, full moments from unfiltered data are used in

the analysis.

6.2 Skewness and kurtosis

The skewness S = 〈u3〉 / 〈u2〉3/2 for both flows is shown in Figures 6.3 in inner and

outer coordinates accordingly. A very similar behavior can be observed in both flows,

with the skewness slightly positive near the wall for y+ < 200 and becoming negative

further away in the log-region and outer flow. For pipe flow, the viscous scaling

(Figure 6.3(a)) does not collapse the profiles and the values show a Reynolds number

dependence. Interestingly, for the boundary layer (Figure 6.3(b)), the skewness is

well collapsed in the log-region 100 < y+ < 0.15Reτ before increasing in the wake,
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Figure 6.2: p.d.f and premultiplied p.d.f for Gaussian distribution (solid lines) and
current boundary layer data at Reτ = 70 × 103, y+ = 800. (a) shows P (u) (•) and
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where S scales with outer variables (Figure 6.3(c,d)). For Gaussian statistics S = 0,

and for both flows we see sub-Gaussian behavior. In pipe flow, we see a Reynolds

number dependence throughout the flow, with S becoming negative depending on

Reynolds number from y+ = 100 to y+ = 450 and slowly decreasing from there until

the pipe centerline. For the boundary layer, on the other hand, the skewness profiles

are well collapsed, and we see all profiles change sign at y+ = 200 and reach a value

of S ≈ −0.1 before decreasing in the wake. Mathis et al. [2009] observed that the

skewness behaves similarly to the amplitude modulation function, suggesting that the

skewness reflects modulation of the near wall flow by outer-scaled eddies. Collapse of

the profiles suggests that sufficient scale separation might have been reached at higher

Reynolds numbers, agreeing with our observations of the behavior of the variance.

The kurtosis K = 〈u4〉 / 〈u2〉2 in inner and outer scaling is shown in Figures 6.4.

All the values are slightly below 3, with K ≈ 2.7, indicating again a sub-Gaussian

behavior. The scaling with inner coordinates in Figure 6.4 (a,b) shows a similar

behavior for both flows, with some dependence on the Reynolds number, but it must

be kept in mind that spatial filtering effects increase for higher order moments and

therefore this could be masking the true behavior of K. In outer scaling (Figure 6.4

(c,d)), pipe and boundary layer flows also show the same values and behavior of

K, having some Reynolds number dependence (or just indicating effects of spatial

filtering). Therefore no significant conclusions can be made, except the observation

that pipe and boundary layer show essentially identical behavior of kurtosis.

6.3 High-order even moments

The attached eddy hypothesis, first introduced by Townsend [1976], states that the

length scales of eddies are proportional, and their population density is inversely

proportional, to the distance from the wall. Meneveau and Marusic [2013] describe
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Figure 6.3: Skewness in inner coordinates (a,b) and outer coordinates (c,d). Empty
symbols indicate Pipe flow (a,c) and filled boundary layer (b,d). Symbols as indicated
in Table 6.1.
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Figure 6.4: Kurtosis in inner coordinates (a,b) and outer coordinates (c,d). Empty
symbols indicate Pipe flow (a,c) and filled boundary layer (b,d). Symbols as indicated
in Table 6.1.
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that if the summands are assumed to be statistically independent (as in the case of

non-interacting eddies), Equation (5.1.2) is consistent with the attached eddy hypoth-

esis. Furthermore, they show by using the central limit theorem that the pth root of

moments of velocity fluctuations could be expected to behave according to

〈

(

u+
)2p

〉1/p

= Bp − Ap ln(y/δ), (6.3.1)

where Ap and Bp are constants, at least at fixed Reynolds number. This equation,

introduced by Meneveau and Marusic [2013], is the generalized logarithmic law for

high-order moments. They looked at the validity of this law in boundary layers

with Reτ up to 19,000 and found good agreement between Equation (6.3.1) and

experiments. The behavior of high-order moments was noted to be sub-Gaussian

with the possibility of having a universal value of Ap. Here we extend this analysis

to both pipe flow and boundary layer at even higher Reynolds numbers.

Moments up to 12th order have been calculated and analyzed, and the behavior

was found to be similar for all even moments studied. Figure 6.5 shows the pth roots

of the pth even moments
〈

(u+)
2p
〉1/p

, for 2p = 2, 6, 10 (the data for 2p = 4, 8, 12

show the same trends). Results for both pipe (empty symbols) and boundary layer

(filled) flows are shown for six matching Reynolds numbers, as listed in Table 6.1.

For higher moments, a qualitatively similar behavior can be seen as for the variances,

with an inner peak at about y+ = 15 having a Reynolds number independent value,

a blending region in the mesolayer (30 < y+ < 300), and a logarithmic behavior in

the log-region. The results from the pipe and the boundary layer agree very well

throughout most of the flow, with the only differences in the outer layer due to the

different outer boundary conditions, as expected. Some differences can also be seen

in the near-wall region, around y+ ≈ 15, where pipe flow has a slightly higher peak

value and smaller spatial filtering effects, because ℓ+ is smaller for the pipe (listed in
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Table 6.1). Here, no spatial filtering correction has been used for any moments, as

there is no well-established corrections, and so caution must be used when drawing any

conclusions for y+ < 100. Finally, it appears that the inner limit of the logarithmic

range is at higher y+ for pipe flows, as seen for the variances.

Figure 6.5(b, d, f) show results in outer coordinates for Reτ ≥ 20, 000, that is,

for the three highest Reynolds numbers. The solid line indicates Equation (6.3.1)

with constants Ap and Bp found from a regression fit to the pipe flow profile at

Reτ = 70, 000 (A1 = 1.13 and B1 = 1.17, A6 = 2.48 and B3 = 3.31, A5 = 3.44

and B5 = 6.73 respectively). Similarly to the behavior of the variances, the higher

moments show a good collapse between pipe and boundary layer flows, though the

boundary layer data again shows some Reynolds number dependence. For the higher

moments the collapse between profiles actually improves in the log-region, clearly

showing a wide range of logarithmic behavior.

Following Equation (6.3.1), constants Ap and Bp were found by regression fit

to each profile; that is separately for each flow, Reynolds number and moment.

In order to avoid biases from the range chosen, and to try to determine the best

range, different ranges were used for fitting, with the inner limit varying as y+min =

[3Re0.5τ ; 200; 400; 600; 800] and keeping a constant outer limit at (y/δ)max =0.15. A

minimum of four points in each profile were used for determining the constants, oth-

erwise the profile was discarded as not having a sufficiently extensive logarithmic

region.

The Perry-Townsend constant Ap in Equation (6.3.1), as a function of moment, is

shown in Figure 6.6, for five different ranges for both flows. For Gaussian statistics,

Ap,G = A1 [(2p− 1)!!]1/p, where !! denotes double factorial, and this result is shown

as the solid line in Figure 6.6. It is clear that for both pipe and boundary layer

flows, all the constants have a sub-Gaussian behavior, as was previously observed by

Meneveau and Marusic [2013] for boundary layers. For smaller y+min values for the
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fit limit, one can see a clear Reynolds number variation in the values of Ap between

cases, as well as change in value with changing limit. For pipe flow, Ap was found to

become independent of Reτ for y+min ≥ 600, and the value y+min = 3Re0.5τ was found to

be a poor estimate for inner limit. In contrast, for boundary layer flows y+min = 3Re0.5τ

proves to be a good inner limit and the constants found from there are similar to ones

for conservative ranges with y+min ≥ 600. It must be noted, however, that for boundary

layer the Reynolds number dependence is already negligible at y+min = 400. Assuming

that the more conservative range gives a more precise estimate of the constant, it

can be argued that values using a higher y+min better represent the true value. It was

found empirically that a good representation of the asymptotic constant value of the

slope is given by Ap ∼ (2p−1)1/2 for both pipe and boundary layer (shown in dashed

line in Figure 6.6), rather than the Gaussian variation (shown as a solid black line).

It may be concluded that if large enough value of y+min is chosen, Ap does not

depend on Reynolds number in neither pipe nor boundary layer flows. The only

outlier, the highest Reynolds number case for the boundary layer, has a slightly

lower value of Ap, which is probably due to the difficulties in estimating the higher

order moments (especially the 12th moment) given the limited spatial resolution of

the probe at the very highest Reynolds numbers. For outer limit of the log-region,

y/δ = 0.15 was found to be the best limit for both flows (even though for the variances

measured in the boundary layer, a logarithmic behavior was observed extending as

far as up to y/δ = 0.3).

Figure 6.7 shows the variation of the additive constant Bp in Equation (6.3.1) as a

function of moment and Reynolds numbers, for different ranges of fitting. Similar to

behavior of the slopeAp, for low values of y+min there is a large variation of the constant.

For both flows, a more constant value of Bp is reached as the inner limit is increased.

For pipe flow, again, y+min ≥ 600 seems to be the start of the range where Bp becomes

independent of Reynolds number, whereas y+min ≥ 3Re0.5τ proves to be a poor choice.
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Figure 6.6: Perry-Townsend constant Ap for even moments 2p for the fitting range
y+ = [y+min, 0.15Reτ ]. The solid black line shows the slope of a Gaussian distribution,
and the dashed line shows the empirical fit Ap = 1.26(2p− 1)1/2. Colors as indicated
in Table 6.1.
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Interestingly though, for the boundary layer the behavior of Bp with a change in y+min

is different from that observed for the slope. For y+min ≥ 3Re0.5τ , a clear dependence

on Reτ can be observed, as well as for any limits below y+min = 600. However, for a

conservative limit of y+min ≥ 600, the additive constant in boundary layers also seems

to reach an asymptotic value independent of Reτ . This is in contrast to the findings

by Meneveau and Marusic [2013], who found Bp to depend on Reτ (as could be seen

here for y+min ≥ 3Re0.5τ which is what they used as their inner limit). However it must

be kept in mind that less than a decade of Reynolds numbers can be studied and

therefore any Reynolds number dependence could just be within experimental error.

6.4 Conclusions

Following the results above, it could be argued that to reach true independence of

Reynolds number for the higher order moments, the log-region defined by 600 <

y+ < 0.15Reτ should be considered for both pipe and boundary layer flows. For

the boundary layer, y+min ≥ 3Re0.5τ seems to be a reasonable estimate for the inner

limit of the logarithmic behavior for the mean flow and the turbulent stresses, but

for higher-order moments this lower limit leaves the additive constant Bp varying

with Reynolds number. Therefore, even though a sufficient separation between inner

and outer scaling has been reached for mean and variances, higher-order moments

still have some viscous effects present in the range 3Re0.5τ ≤ y+min ≤ 600 (for Reτ <

40, 000, where this region excists). At the same time, a universal log-region defined by

600 ≤ y+ ≤ 0.15Reτ for both pipe and boundary layer would support the hypothesis

of similarity of wall-bounded flows in the inner region of the flow. These bounds also

define a minimum Reynolds number where this similarity occurs to be Reτ ≈ 4, 000

(being much higher than previusly believed, as discussed in Smits et al. [2011a]), and

therefore a decade of true scale separation could only be seen above Reτ = 40, 000.
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Figure 6.7: Additive constant Bp for even moments 2p for the fitting range y+ =
[y+min, 0.15Reτ ]. The dashed line shows the empirical fit Bp =

3
4
2p. Colors as indicated

in Table 6.1.
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Chapter 7

Spectra in turbulent wall-bounded

flows

7.1 Introduction

In the previous chapters, the statistics of turbulent pipe and boundary layer flow were

studied. We saw that there are scaling laws for different regions of the flow and we can

estimate the behavior of the flow with changing Reynolds number. We also found that

the mean velocity, the variations and even the higher order moments all demonstrate

a logarithmic behavior in the inertial sublayer (800 . y+ . 0.15Reτ in pipes, and

3Re0.5τ . y+ . 0.15Reτ in boundary layers). However, one of the important questions

in turbulence is to understand how the energy injected at large scales is transported

to the small scales and dissipated, the so-called the energy cascade. Here, spectral

analysis becomes useful. Unfortunately, experimentally measuring the full three-

dimensional energy spectrum is extremely difficult, as one needs fully resolved three-

dimensional velocity data. Instead, we can often only examine the power spectral

density of the streamwise velocity fluctuations Φuu, so that
∫∞

0
Φuu(kx) dkx = u2.

In the logarithmic region, where ν/uτ ≪ y ≪ δ, the turbulence spectrum is usually
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divided into three regions: a low wavenumber range that scales with the characteristic

shear layer length scale δ; an intermediate wavenumber range that scales will the wall-

normal distance y; and a high wavenumber range that scales with the Kolmogorov

length ηK . As shown by Perry et al. [1986], we expect that at high enough Reynolds

numbers, there will be an overlap of the low and intermediate wavenumber regions,

described by

Φuu(kxδ)

U2
C1

= g1(kxδ) =
A1s

kxδ
, (7.1.1)

or

Φuu(kxy)

U2
C1

= g2(kxy) =
A1s

kxy
, (7.1.2)

where UC1 and UC2 are the respective characteristic velocities, A1s is a universal

constant, kx = 2π/λx is the streamwise wavenumber, and λx is the streamwise wave-

length. This overlap relation is often referred to as the inverse power law [Perry et al.,

1986] or alternatively the k−1
x law.

Similarly, an overlap of the intermediate and high wavenumber regions would be

expected, with

Φuu(kxy)

U2
C2

= g2(kxy) =
K0

κ2/3(kxy)5/3
, (7.1.3)

or

Φuu(kxηK)

u2K
= g3(kxηK) =

K0

(kxηK)5/3
, (7.1.4)

which is referred to as the k
−5/3
x law, and the region is often called the inertial sub-

range. Here uK is the Kolmogorov velocity, K0 ≈ 0.5 is the Kolmogorov constant, and

κ ≈ 0.4 is the von Kármán constant [Perry et al., 1986]. The Kolmogorov length ηK

and velocity uK can be expressed as a function of viscosity ν and the total dissipation

rate ε, as ηK = (ν3/ε)1/4 and uK = (νε)1/4.

The characteristic velocities at large and intermediate wavelengths can be assumed

to be equal to the friction velocity (which is reasonable considering the scaling in the
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statistics) so that UC1 ∼ UC2 ∼ uτ . Now, by integrating over the named spectral

regions, the streamwise turbulence intensity u can be found as

u2+ = B1s − A1s ln
[y

δ

]

− F (y+)−0.5, (7.1.5)

where A1s and F are universal constants and B1s is a large-scale constant, as shown

in Perry et al. [1986]. As y+ → ∞ (that is where y >> ν/uτ ) this relation becomes

u2+ = B1 − A1 ln
[y

δ

]

, (7.1.6)

suggested first by Townsend [1976] and observed experimentally in Chapters 3 and 5

for pipes and boundary layers. Here we have dropped subscript s from the constants

A1 and B1 with the assumption that this is the correct reasoning for explaining the

logarithmic behavior in the variances.

Based on reasoning of Perry et al. [1986], the k−1
x region would be expected to

appear together with the k
−5/3
x region in the region where the turbulent fluctuations

show a logarithmic behavior. The existence of a k−1
x law is important to establish, as

it also plays an important role in many turbulence models, especially in the framework

of Townsend’s attached eddy framework [Marusic and Kunkel, 2003, Marusic et al.,

1997, Perry and Chong, 1982, Perry and Li, 1990, Townsend, 1976]. Whereas an

inertial subrange with k
−5/3
x has been observed in many experiments, the k−1

x has only

been seen in laboratory flows at high Reynolds number over a very limited spatial

extent by Nickels et al. [2005], although several authors report its presence in the

atmospheric boundary layer (see, for example, Högström et al. [2002], Katul and Chu

[1998]). We should note, however, that Hultmark [2012] suggested an alternative

derivation for Equation (7.1.6) without involving the spectral overlaps and k−1
x region.

Existence of k−1
x region would indicate a complete similarity. Morrison et al. [2004]

found no such overlap region in pipe flow between low and intermediate wavenumber
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regions, showing an incomplete similarity behavior. They suggested that there is no

complete similarity because even though inner scaling (y and uτ ) may properly scale

the spectrum at intermediate wavenumbers, these wavenumbers might be too small

for simultaneous scaling with outer variables (δ and uτ ). They also speculated that a

different velocity scale might be considered for outer scaling which would then make

complete similarity impossible.

The energy distribution in wavenumber space represented by the spectrum can

also help to understand the structure of the turbulent shear flows and the behav-

ior of coherent structures in these flows. Large scale coherent structures in the

turbulent wall region and outer flow have been observed both in boundary layers

(Kovasznay et al. [1970], Balakumar and Adrian [2007]) and pipes (Kim and Adrian

[1999], Guala et al. [2006]) and are usually referred to as Large Scale Motions (LSMs).

These structures are usually about 2-3δ in streamwise and 1-1.5δ in spanwise direc-

tion and are often associated with occurrence of bulges of turbulent fluid at the edge

of the wall layer. They carry a significant amount of the Reynolds shear stress and

play an important role in turbulent transport [Ganapathisubramani et al., 2003].

Recent advances in visualization techniques have revealed the existence much

longer meandering structures in wall shear flows. In pipe flows these structures are

usually referred to as Very Large Scale Motions (VLSMs), observed by many authors

[Bailey and Smits, 2010, Guala et al., 2006, Kim and Adrian, 1999], and extending

up to 20R in the streamwise direction [Monty et al., 2007]. Similar very large scale

coherent structures have been observed in the turbulent wall region of boundary

layers, extending up to 20δ [Hutchins and Marusic, 2007] in length, and denoted as

superstructures (SS). Hutchins and Marusic [2007] found that these superstructures

seem to scale with the boundary layer thickness δ, that they have a meandering

nature, and that they are present only in the turbulent wall region, compared to

VLSMs that extend throughout the outer flow of pipes and channels. It is important
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to note that when inferred from single point statistics, these lengths are usually much

shorter, 6δ and 10-15R respectively, due to the meandering nature of these large co-

herent structures [Hutchins and Marusic, 2007]. The differences between VLSM and

SS may simply be due to the different boundary conditions imposed by open and

confined geometry flows [Monty et al., 2009].

In the spectra, it is often true that here are two distinct maxima observed, one

in the near-wall region associated with the near-wall energy production around the

inner peak in u2+ at about y+ ≈ 15 (we shall call this the inner spectral peak),

and one in the outer region associated with the VLSMs or SSs (we shall call this

the outer spectral peak). The location and magnitude of the outer spectral peak

is still an open question, as these very large coherent structures together with the

outer spectral peak can only be seen at high Reynolds numbers where the scale

separation is large enough. Hutchins and Marusic [2007] observed this outer spectral

peak associated with superstructures for Reτ ≥ 2, 000 in boundary layers, and found

that the magnitude of the peak increases with Reynolds number. It was located at

about y/δ ≈ 0.06 and λx/δ ≈ 6. This observation was made on data with a maximum

Reτ ≈ 7, 300, and it was noted that a larger range of Reynolds number is needed to

make further conclusions. A considerably larger range, 2, 800 < Reτ < 19, 000, was

available to Mathis et al. [2009], who studied the large scale amplitude modulation

on the small scale structures in boundary layers. At these Reynolds numbers, the

footprint of superstructures and the associated outer spectral peak was clearly evident.

They found that the large-scale intensity in the log-region increases with Reynolds

number, and results in increase in amplitude modulation on the near-wall small-scale

structures (suggesting that the increase in outer spectral peak energy was connected

to the increase in the near-wall peak in u2+). Based on their more extensive Reynolds

number range, Mathis et al. [2009] suggested that the outer spectral peak is located

at about y+ ≈ 3.9Re0.5τ (which they associated with the middle of the log layer with
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bounds 100 < y+ < 0.15Reτ ). They also found that this location collapsed well with

the zero magnitude of the amplitude modulation (which was also very similar to the

skewness profile of the velocity).

All these observations have been made at relatively moderate Reynolds numbers,

and there remains the question whether these reported trends persist with increas-

ing Reynolds number, or if some Reynolds number independent self-similar flow will

emerge once the scale separation is large enough. Here, we have the unique oppor-

tunity to study the spectra from well-resolved high Reynolds number experiments in

pipe and boundary layer at comparable Reynolds numbers, up to Reτ ≈ 70, 000.

7.2 Experiments

In previous Chapters (3 and 5), high Reynolds number experiments were described

in pipe flow up to Reτ ≈ 100, 000, and in a zero pressure gradient boundary layer up

to Reτ ≈ 70, 000. The NSTAP sensor (described in Chapter 2) allows a very high

temporal resolution (up to 300 kHz) together with its good spatial resolution (down

to 30µm). Here we compare spectra for six matching Reynolds numbers (as we did

for the high-order moments in Chapter 6): Reτ ≈ 3× 103; 5× 103; 10× 103; 20× 103;

40×103; 70×103, with properties listed in Table 7.1. The outer characteristic length

scale is denoted as δ throughout this chapter, corresponding interchangeably to the

boundary layer thickness for boundary layers and the pipe radius for pipes.

We are interested in looking at the spatial spectrum of the energy associated with

the streamwise fluctuations. Taylor’s hypothesis [Taylor, 1938] was used to covert

the frequency spectrum to the spatial spectrum by assuming that the local turbulent

field is “frozen” while it is carried past the sensor by some large scale characteristic

velocity. Here we use the local mean velocity U(y) as the convection velocity at each

wall-normal location. Rosenberg et al. [2013] gives an extended discussion on the
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Case Pipe Boundary layer
Symbol

Reτ ≈ Reτ ℓ+ f+
s Reτ ℓ+ f+

s

3× 103 3,334 3.1 12.6 2,622 5.8 9.5 H
5× 103 5,412 5.0 9.7 4,635 10.2 5.6 �

10× 103 10,481 9.7 4.8 8,261 17.5 3.4 N
20× 103 20,250 18.8 2.4 25,062 29.2 1.1 �
40× 103 37,690 35.0 1.4 40,053 46.6 0.7 ◭
70× 103 68,371 31.7 0.8 72,526 74.7 0.5 •

Table 7.1: Cases chosen for pipe and boundary layer spectra comparison. ℓ+ is the
wire length in viscous units and f+

s is sampling frequency in viscous units.

implications of using the Taylor’s hypothesis at these Reynolds numbers in pipe flow,

and they conclude that the hypothesis works relatively well, except very close to the

wall where it can introduce significant distortions.

For all cases studied, the original sampling frequency fs in experiments was

300 kHz. This corresponded to 12.6 < f+
s < 0.80 for the pipe flow and 9.47 <

f+
s < 0.45 for the boundary layer flow (shown in Table 7.1, where f+

s = fsν/u
2
τ is the

sampling frequency in viscous units. To avoid the effects of temporal filtering (which

will change with Reynolds number), a low-pass filter with a cut off at f+ = 0.5 was

used to remove any frequencies higher than f+
s for the worst case. This filtered spec-

tra was compared to the original, and it was confirmed that filtering did not alter any

results or conclusions.

In order to find the Kolmogorov length and velocity scales, the rate of dissipation

ε needs to be determined. An estimate of the mean dissipation rate was found using

an isotropic estimate, that is by integrating the one-dimensional dissipation spectrum

according to

ε = 15ν

∫ ∞

0

k2xΦuu dkx. (7.2.1)

Bailey et al. [2009] studied the local dissipation scales in the same pipe facility with

hot-wires at slightly lower Reynolds numbers and found the isotropic relation to be a

reasonable estimate. However, for the highest Reynolds number cases the dissipation
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spectra is not fully covered by the measurements, decreasing the accuracy of the ε

estimate.

7.3 Results and discussion

Spectra at three different Reynolds numbers are shown in figure 7.1 for pipe flow

(a,c,e) and boundary layer flow (b,d,f) at 0.001 ≤ y/δ ≤ 0.5. At the lowest Reynolds

number, a small k
−5/3
x region can be observed for y/δ ≥ 0.05 for both flows, being

more significant for boundary layer. The pipe flow appears to display a k−1
x region for

intermediate wall locations, whereas this is not evident for the boundary layer. As

the Reynolds number increases, the k
−5/3
x region extends for both flows over a longer

wavenumber range and starts emerging closer to the wall. The k−1
x also appears in

pipe flow at some wall locations over a short extent.

7.3.1 The k
−5/3
x dependence

The spectra in Kolmogorov scaling, Φuu/ (εν
5)

1/4
, is shown in figure 7.2 for 0.001 ≤

y/δ ≤ 1.0 at Reτ ≈ 20 × 103 for pipe flow (a) and boundary layer flow (b). The

Kolmogorov scaling collapses the data well for all wall-normal locations at high wave-

numbers, and as the y/δ increases a clear k
−5/3
x range emerges for both flows, ex-

tending up to two decades in kxηK and dropping off at kxηK ≈ 0.1. The energy at

large length scales (smaller kx) increases with y, but for y/δ > 0.15 (the outer edge

of turbulent wall region) the energy at large scales starts to decrease in the wake

region (denoted as dashed lines). However, the k
−5/3
x region continues to increase

with increasing wall distance. This observation agrees well with inertial subrange

scaling arguments, which suggest that the k
−5/3
x region emerges when the separation

between large energetic scales and small dissipative scales is large and the flow can

be considered nearly isotropic. For boundary layer at larger y/δ values the spectra
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departs from k
−5/3
x behavior at higher wavenumbers than in pipe flow, which can be

explained with the intermittency in the outer boundary layer.

By assuming Kolmogorov scaling to be valid at all Reynolds numbers, the error

in finding total dissipation ε can be estimated for each Reτ by examining the lack of

collapse of the experimental spectra in Kolmogorov scaling. This error in Kolmogorov

sectrum Φuu/ (εν
5)

1/4
was found to be increasing with Reτ in range 0.5%−4% for the

pipe and 1%− 5% for the boundary layer, with the exception of the boundary layer

case with Reτ ≈ 70, 000 where error was as large as about 25%. Because Φuu varies

as ε1/4, the uncertainty range for dissipation would be 2% to16% for the pipe and 4%

to 20% for the boundary layer (except for the boundary layer at Reτ ≈ 70, 000 where

the error may be as high as 100%).

We can also examine the inertial subrange behavior with changing Reynolds num-

ber. Figure 7.3 shows Kolmogorov spectra for all Reynolds numbers in this study,

at a single wall normal location y/δ = 0.5. The Kolmogorov scaling collapses all the

cases well above kxηK ≈ 0.015 (with only a slight disagreement at Reτ = 70 × 103

for boundary layers, due to difficulties in estimating ε). As the Reynolds number in-

creases, the separation between the energy production range and the dissipation range

increases. This can clearly be seen in figure 7.3, where the k
−5/3
x extends further out

to smaller kxηK with increasing Reτ .

The behavior of pipe and boundary layer spectra was found to be identical in

Kolmogorov variables for Reτ ≥ 5× 103, which indicates that the small wavelengths

in the turbulent wall region and in the wake are independent of the flow geometry

at these high Reynolds numbers. To demonstrate this point further, in figure 7.4

both pipe (dashed line) and boundary layer (solid line) spectra are plotted on top of

each other for y/δ = 0.05 and y/δ = 0.5. The Kolmogorov constant was found to be

K0 = 0.51± 0.03 for pipe and K0 = 0.52± 0.03 for boundary layer data using a least

square fit in the inertial subrange for 0.05 < y/δ < 0.5.
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7.3.2 The k−1
x dependence

To consider the k−1
x dependence, spectra are shown in pre-multiplied form as kxΦuu/u

2
τ

in Figures 7.5 and 7.6 for Reτ = 5, 000 and Reτ = 70, 000 respectively. In this rep-

resentation, the k−1
x region would show up as plateau in the spectra. For both cases,

spectra in the turbulent wall region 3Re0.5τ < y+ < 0.15Reτ are shown using solid

lines (the region where a logarithmic behavior was found in the mean and variances

and where k−1
x region would be expected based on Perry et al. [1986] analysis), and

spectra in the wake region 0.15 < y/δ < 0.7 are shown using dashed lines.

First, we consider the lower Reynolds number cases shown in figure 7.5. For

low wavenumbers (larger wavelengths), a good collapse is seen with δ scaling, and at

higher wavenumbers (smaller wavelengths), kx scales well with wall-normal distance y.

This is true especially in the turbulent wall region, with departures from these scalings

appearing towards the wake. If an overlap region between these two scalings existed

with the same characteristic velocity uτ , this pre-multiplied representation would
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result in a plateau in the profile. As one can see, there is no clear plateau region

evident in the data, for neither pipe nor boundary layer. However, in either case one

could postulate a small plateau region in a couple of cases for a wall-normal location

around y/δ = 0.15, but this behavior disappears closer to the wall, as well further

from the wall. Also, no region exists where both scalings would collapse the data,

hence there is incomplete similarity, and no full similarity exists, similar to discussion

in Morrison et al. [2004]. This observation suggests that any plateau seen here is just

an artifact of the decrease in the energy at small wave-numbers, bringing down the

peak to form a shoulder, and forming an approximate plateau at some locations near

the outer edge of turbulent wall region. Similar trends can be observed for higher

Reynolds number cases.

Second, we consider the high Reynolds numbers cases. Spectra for Reτ = 70, 000

are shown in figure 7.6 and again, the scalings with y and δ collapse respective ranges

of the wavenumber for 3Re0.5τ < y+ < 0.15Reτ but no overlap between these scalings

is evident suggesting an incomplete similarity. As at low Reynolds number, at some

y/δ locations near 0.15, single spectra show some flattening, but this seems to be due

to the change in the peak energy wavelengths for different wall locations. Therefore

no k−1
x dependence is evident for neither pipes nor boundary layers; small flat regions

seem to indicate the outer bound of the turbulent wall region, where the wavelengths

with highest energy are decreasing, but there is no collapse with y and δ scaling over

the same interval in wavenmuber.

Morrison et al. [2004] suggested existence of incomplete similarity due to uτ not

being the appropriate velocity scale for outer scaling. del Álamo et al. [2004] sug-

gested that the large wall-attached motions do not scale with uτ because their contri-

bution to the Reynolds stress is limited by the impermeability of the wall and proposed

a logarithmic correction to the k−1
x spectrum as kxΦuu = βu2τ log(2πα

2/(kxy). This

function with fitted constants α = 2 and β = 0.2 agreed well with the experimental
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and numerical spectra studied by del Álamo et al. [2004] in the range y < λx < 10y

(0.63 < kxy < 6.3). This relation is shown using a red dashed line in Figures 7.5(c,d)

and 7.6(c,d) using constants from del Álamo et al. [2004], with range y < λx < 10y

shown as solid line. For Reτ = 5, 000, a small interval in wavenumber agrees with

this relation for pipe flow, similar to the suggested bounds 0.63 < kxy < 6.3, but the

boundary layer spectra seem to have a different slope. At Reτ = 70, 000, this rela-

tion agrees with the data over a wider range than that suggested by del Álamo et al.

[2004], but again for the boundary layer the slope should be varied to agree better,

possibly indicating that the constant β could vary with Reynolds number (β = 0.23

and 0.19 were found better fits for Reτ = 5, 000 and 70,000 respectively).

In chapter 3.4, we found that the streamwise turbulent stress u2+ scaled well with

outer variables uτ and δ in both the turbulent wall region and in the wake. In this

outer region, Φuu should also scale with outer variables at large wavelengths. The pre-

multiplied spectra for all Reynolds numbers at four different locations y/δ = 0.05; 0.1;

0.15; 0.5 are shown in figure 7.7. Based on the observations on the scaling of u2+ in

pipe and boundary layer flows, better collapse with outer variables would be expected

in pipe flow. This can indeed be concluded from figure 7.7, where spectra in pipe flow

(a,c,e) show better collapse than spectra in boundary layer flow (b,d,f). In boundary

layers, the energy at large scales is decreasing and more energy is relocated to higher

wave-numbers. However, if boundary layer spectra show a clear trend with Reynolds

number, there is some variation in pipe flow as well, showing a slight decrease in the

energy with increasing Reynolds number. This could be the effect of spatial filtering,

which would re-locate energy from higher wave-numbers to lower ones by averaging

over the sensor length, even though the sensor length at highest Reynolds number

corresponds to k+x = 0.08 or kxδ = 6× 103 and therefore should not play a significant

role. Alternatively, this shift in profiles could be a result of using Taylor’s hypothesis.

For pipe flow (figure 7.7, on the left) at y/δ = 0.15, a plateau region can be seen for
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each Reynolds number, with the magnitude 0.6 to 0.8, which is close to the constant

A1 = 0.8 found by Perry and Abell [1977]. But if other y locations are considered,

a clear trend can be seen, where closer to the wall the peak in energy is at lower kx

and further from the wall this VLSM peak decreases while the peak of LSM at higher

kx increases. This suggests that the k−1
x region observed at y/δ ≈ 0.15 is just the

region where these two peaks are approximately the same magnitude, showing up as

two small bumps, feigning a true k−1
x region. If this behavior is an inherent aspect of

the turbulent wall region, some plateau would be expected to appear at all locations

where y/δ < 0.15. However, from figure 7.7 at y/δ = 0.05 and 0.1 this does not seem

to be the case. For the boundary layer, there are no pronounced two peaks in energy,

and instead only one peak associated with superstructures is evident. For boundary

layer flow (figure 7.7, on the right), some small regions with k−1
x behavior can be seen

for maybe y/δ = 0.05 and y/δ = 0.1 at the higher Reynolds numbers, but there is no

indication of a constant magnitude of this region, as there is clear decrease of energy

with Reynolds number. An alternative theoretical approach was recently suggested

by Hultmark [2012], who showed a logaritmic behavior in variances without involving

spectral arguments and therefore not needing a k−1
x region in spectra to explain the

log behavior.

7.3.3 Scaling of spectral peaks

We now consider the coherent large wavelength motions and the scaling behavior of

the inner and outer spectral peaks. In pipe flow, Rosenberg et al. [2013] identified

distinct Reynolds number independent scaling for LSM and VLSM peaks in each

wall-normal region. Near the wall at y+ < 12, a single peak scales with y, where

kxy ≈ 0.07. At y+ = 12, the low and high wavenumber loci bifurcate, where the LSM

peak scales first with the viscous length ν/uτ (k+x ≈ 0.006) and for y+ > 67 with y as

kxy ≈ 0.4 in turbulent wall region. Surprisingly, Rosenberg et al. [2013] found that
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the VLSM peak also scaled with wall-normal location y in the turbulent wall region

(kxy ≈ 0.045), and not with δ as seen in boundary layers by Hutchins and Marusic

[2007]. Finally, for y/δ > 0.1 both spectral peaks scale with the pipe radius (here

labelled as δ): the VLSM peak as kxδ ≈ 0.45, and the LSM peak as kxδ ≈ 2.6.

Figures 7.8 and 7.9 (from Rosenberg et al. [2013]) show the locations of these spectral

peaks and the described trends in inner and outer coordinates respectively.

We now apply the methodology used by Rosenberg et al. [2013] for analyzing the

spectral peaks in pipe flow for finding the spectral peaks in the boundary layer flows.

In order to estimate the wavenumber peak location, a Gaussian curve in log(kx) was

fitted to the data locally at each peak. At locations where the second peak was more

difficult to identify, because it appeared more as a narrow shoulder rather than a

distinct peak (the LSM peak in the region 100 < y+ < 0.15), a cubic spline was used

to fit data locally and the point of inflection was used as an estimate of the peak

location. The spectral peak at higher wavenumbers is identified as the LSM peak,

as done for pipe flows, and the peak at lower wavelengths is considered to be the SS

(superstructure) peak, similar to the VLSM peak seen in pipes.
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The locations of the spectral peaks scaled with viscous variables are shown in

Figure 7.10. In the near-wall region, for y+ < 10, a single peak is observed, scaling

with the wall-normal distance and located at about kxy ≈ 0.05 (λx ≈ 125y). It is

important to note that this scaling is purely the result of the local mean velocity

used as convection velocity when applying Taylor’s hypothesis, which is not a good

approximation in this region. For y+ < 10, the mean velocity has a nearly linear

profile U+ ≈ y+, and this makes kxy constant in this region. If no Taylor hypothesis

were applied, the inner peak scales purely with the viscous time scale, being constant

at f+ ≈ 0.008, or t+ ≈ 125.

Near y+ ≈ 10, which is close to where the turbulent kinetic energy has its max-

imum, there is a bifurcation in the loci of the peaks, so that the peak associated

with larger wavenumbers (LSMs) starts scaling with the viscous length η and goes

as k+x ≈ 0.005 (or λx ≈ 1250η). This LSM peak dominates the spectrum to about

y+ ≈ 50, after which the locus of the peak starts to scale with y, its magnitude be-

comes small, and it only appears as a small shoulder in the pre-multiplied spectrum.

The magnitude of this LSM peak is much weaker than in pipe flow, indicating a lower

energy content in the LSMs for boundary layers, but its location scales with y as in

pipe flow, going as kxy ≈ 0.4.

In figure 7.10 the trends for each region described above are shown. The peaks

scaling with inner variables, associated with near wall and large scale motions below

y/δ < 0.15, are shown with filled symbols, to better visualize the trends. The loci

of the second peak, emerging for y+ > 10 and associated with superstructures, are

shown in gray symbols, and the peak loci for y/δ > 0.15 are shown with empty

symbols.

In figure 7.11 the same peak loci are shown in outer coordinates. Here, the

peak loci associated with superstructures (larger wavelengths, smaller wavenumbers),

are shown with solid symbols, and the loci associated with near-wall and LSMs
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shown with empty symbols. It is clear that, in agreement with the observations

by Hutchins and Marusic [2007], the superstructures are dictated by the outer scales

and the loci of the peaks scale with δ. The location of this peak in the turbulent wall

region seems to be Reynolds number independent, with the location of this second

peak described by kxδ ≈ C(y/δ)−1/2, or k+x ≈ C(y+R+
τ )

−0.5, showing simultaneous

dependence on wall-normal distance as well as the boundary layer thickness (the con-

stant was found to be C ≈ 0.33). This trend expressed in terms of the wavelength

gives λx+ ≈ 20(y+Rτ )
0.5, which suggests that the region 50 < y+ < 0.15Reτ is a

transitional phase, where SS are associated with wavelengths λx ∼ y1/2δ1/2. Our

previous analysis indicated that in the same region where 50 < y+ < 0.15Reτ there

was no overlap region between y and δ scaling in the spectra (Chapter 7.3.2).

At the outer edge of the turbulent wall region, at y/δ ≈ 0.15, the two peaks (SS

peak and LSM peak) merge back together to form a single peak in the spectrum for the

rest of the outer region of the flow, at about kxδ ≈ 2. This value corresponds to λx ≈
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3δ, which is in agreement with previous observations [Ganapathisubramani et al.,

2003].

In pipe flow, Rosenberg et al. [2013] found that the wavelength associated with

VLSMs in the turbulent wall region is solely determined by wall distance. The same

analysis for pipe flow was done in exact same way as for boundary layer and at every

wall normal location (Rosenberg et al. [2013] used only about a third of the data),

and the VLSM peak loci was found to scale with δ for y+ > 50, going as kxδ ≈

0.17(y/δ)−0.66, compared to kxδ ≈ 0.045(y/δ)−1 found by Rosenberg et al. [2013].

This indicates that in pipe the VLSM structures are more strongly dependent on

radial distance. The peak loci in inner and outer coordinates are shown in Figures 7.12

and 7.13.

Based on the analysis given here, it can be concluded that the LSMs have the

same characteristics in confined and open geometries but the superstructures and

VLSMs continue to behave differently even at very high Reynolds numbers. The

outer flow in pipe flow continues to be characterized by LSMs and VLSMs, whereas

in the boundary layer a single peak associated with large energetic structures suggests

that the superstructure organization is lost in the wake region leaving only one size

of large scale structure with λx ≈ 3δ.

7.3.4 Outer spectral peak

Previous studies by Hutchins and Marusic [2007] and by Mathis et al. [2009] found

that the location in inner variables and the value of the maximum in the spectral peak

(the outer spectral peak) associated with superstructures varied with Reτ . Our study

includes a range of Reynolds numbers with large separation of scales and therefore

provides a great opportunity to study the behavior of this outer spectral peak further.

Figure 7.14 shows the magnitude of the superstructure peak at each wall-normal

location in inner variables for all Reynolds numbers for pipes (a) and boundary layers
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Figure 7.12: Spectral peak locations in inner coordinates for pipe. (Filled blue sym-
bols) peaks associated with near-wall structures and LSMs; (Filled gray symbols)
peaks associated with VLSM; (Open symbols) peak loci at y/δ > 0.15; (dashed lines)
y+ = 10 and y+ = 50; symbols are according to Table 7.1.
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177



www.manaraa.com

10
2

10
3

10
4

0.5

1

1.5

y+

k xΦ
uu

/u
τ2

Pipe

(a)

10
2

10
3

10
4

0.5

1

1.5

y+

k xΦ
uu

/u
τ2

Boundary Layer

(b)

Reτ

Reτ
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τ for 50 < y+ < 0.15Reτ associated with a) VLSM in

pipe and b) SS in boundary layer. Dashed line shows y+ = 300; arrows indicate the
increasing Reynolds number; symbols as shown in Table 7.1.

(b). The location and magnitude of the peaks increases for the three lowest values

of Reτ similar to that seen by Mathis et al. [2009], but for Reτ ≥ 10, 000 the profiles

appear to collapse in viscous units, so at the highest four Reynolds numbers available,

the magnitudes seem to become independent of Reynolds number. This collapse also

suggests that the location of the peak does not increase significantly with Reynolds

number. Now we will separately discuss the location and magnitude of this outer

spectral peak (OSP), corresponding to VLSM and SS for pipes and boundary layers,

respectively. It must be noted that this relatively constant magnitude could also just

be an artifact of the measurements: due to changing from 60 to 30µm sensor and

overall experimental uncertainty.

The wall-normal location of the OSP for all Reynolds numbers is shown in Fig-

ure 7.15, together with the boundary layer data and trends from Mathis et al. [2009].

In addition, the location of the outer peak in the variances is shown in the same figure

using gray symbols, and the location of the zero crossing in the amplitude modulation

function (Rm = 0) for the current data are marked with empty symbols (Mathis et al.
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Figure 7.15: Wall-normal location of outer spectral peak varying with Reτ . (•) all
pipe cases from Chapter 3; (�) all boundary layer cases from Chapter 5. a) (solid
red line) y+ ≈ 47 ln (Reτ )−190 with error bounds y+ = ±100 (dashed red lines); and
(solid blue line) y+ ≈ 78 ln (Reτ ) − 420 with error bounds y+ = ±100 (dashed blue
lines); (�) location where amplitude modulation Rm = 0 for boundary layer; (◦)
location where Rm = 0 for pipe; (�) location where outer peak in u2+ for boundary
layer; (•) location where outer peak in u2+ for pipe; Adapted from Mathis et al.
[2009]: (N) shows the location where Rm = 0 in their boundary layer study; (black
solid line) 3.9Re0.5τ ; (black dash-dotted line) 0.42Re0.75τ ; and ♦ denotes atmospheric
data, see reference in Mathis et al. [2009].
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[2009] found these loci follow the outer spectral peak location).

The outer spectral peak loci were determined by locally fitting Gaussian curves

and finding the closest available data-point. As can be seen in Figure 7.15(b), the

locations of the boundary layer outer spectral peak (y+OSP , red markers) at lower

Reynolds numbers agree well with the results from Mathis et al. [2009] and follow the

Re0.5τ trend. But for Reτ ≥ 10, 000, the location of the outer peak starts flattening, so

that overall the location of the OSP shows a logarithmic behavior in Reτ as y+OSP ≈

47 ln (Reτ ) − 190. The outer peak in the variance and the Rm = 0 loci display

very similar values and trends to the OSP loci, indicating that all these phenomena

occur at approximately same wall-normal distance. It must be kept in mind that

the data were acquired in ∆y+ ≈ 40 to 100 increments, and the location of the

maximum energy therefore has a comparable uncertainty range. To demonstrate this

uncertainty, dashed lines show limits of y+ ± 100 around the empirical fit.

These trends agree well with the experimental results form Mathis et al. [2009],

but indicate much lower values than found in atmospheric studies. In order to verify

these trends or disprove them, even higher Reynolds number experiments are needed,

or more atmospheric data with better precision.

Peak loci for pipe (blue markers in Figure 7.15(b)) behave in a similar manner to

boundary layer, but having less variation, which can be explained by the fact that

data for pipe is available for ∆y+ ≈ 30−60 allowing for higher precision. Again, data

seems to follow a logarithmic trend with Reynolds number and empirical fit gives

y+ ≈ 78 ln (Reτ )− 420. The outer peak in variance loci have close values and trends

to the OSP loci, whereas Rm = 0 locations seem to continue following the Re0.5τ trend

even for higher Reynolds numbers. This could either indicate that the zero crossing

of amplitude modulation does not occur at the same location as peaks in variance

and spectra, or that the uncertainty in determining peak values is even higher than

estimated. The higher values of y+ for pipe flow compared to boundary layer agree
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cases from Chapter 3; (�) all boundary layer cases from Chapter 5; (solid red line)
kxΦuu/u

2
τ = 0.049 ln (Reτ ) + 0.80; (solid blue line) kxΦuu/u

2
τ = 0.098 ln (Reτ ) + 0.16.

with findings in previous Chapters, where it was concluded that the start of the

overlap region is always further from the wall for pipe flow, compared to boundary

layer.

It is evident from this discussion that the location of the outer spectral peak varies

as y+ ∼ lnReτ for pipe and boundary layer flows. This result implies that the motions

containing high energy are confined in a region almost fixed in y+ as the Reynolds

number increases. Because the viscous length scale decreases with increasing Reτ

in a developing boundary layer, this would mean that the region with high energy

and vorticity decreases in physical space and diminishes near the wall (see also the

discussion by Pullin et al. [2013]). In the limit of infinite Reynolds number this would

recover a potential flow situation with essentially a slip-flow bounded by a vortex sheet

at the wall.

The magnitude of the outer spectral peak in kxΦuu/u
2
τ for each Reynolds number

is shown in Figure 7.16. Similar in behavior to the location of this peak, there is an

initial increase with Reτ , but above Reτ > 10, 000 the magnitude of the peak stays
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about constant. Again, approximately logarithmic trend can be found by fitting

the data, giving kxΦuu/u
2
τ = 0.049 ln (Reτ ) + 0.80 for the boundary layer (red), and

kxΦuu/u
2
τ = 0.098 ln (Reτ ) + 0.16 for the pipe (blue).

This suggests that the energy at the outer spectral peak only has a weak lnReτ

dependence on the Reynolds number. This observation could indicate that the outer

peak in the variances, which inevitably will be closely related to the energy in the

outer spectral peak, might also not increase indefinitely with Reynolds number, unless

the increase in the peak in u2+ is supported by spreading energy content over a wider

range of kx, similar to the behavior found for the inner spectral peak in pipe flow by

Hultmark et al. [2010]. However, some caution must be exercised in interpreting these

results, as some of the trends could be affected by using Taylor’s hypotheses, and there

is not wide enough range of Reτ available to strong conclusions. Spatial resolution

issues with increasing Reτ could also play a role, although the sensor size is about

three magnitudes smaller than wavelengths associated with these superstructures and

would therefore be expected negligible.

It should also be noted that the data-set acquired in the boundary layer at Reτ ≈

15, 000 has been included in Figures 7.15b and 7.16. This case was excluded from most

of the comparisons made in this Chapter, mainly because there was no corresponding

case in pipe flow, but also due to possible instability of the sensor as mentioned in

Chapter 5.3. It was found that the loci of the LSM and SS peaks for that case seem

to follow closely the trends described above, and the outer spectral peak for that case

was also located at about y+ ≈ 300, but this peak had a slightly higher magnitude of

kxΦuu/u
2
τ , which could have been caused by insufficient damping of the anemometer

bridge.
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Figure 7.17: Surface plots of spectra at Reτ = 3, 000, 5, 000, 10, 000. Lines show trends in the loci of peaks shown in Figures 7.10
and 7.11; black × shows location of OSP; white × shows Mathis et al. [2009] suggested OSP location; + shows SS maximum
peak found in Hutchins and Marusic [2007].
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Figure 7.18: Surface plots of spectra at Reτ = 25, 000, 40, 000, 70, 000. Lines show trends in the loci of peaks shown in
Figures 7.10 and 7.11; black × shows location of OSP; white × shows Mathis et al. [2009] suggested OSP location; + shows SS
maximum peak found in Hutchins and Marusic [2007].
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7.3.5 Wall-normal layers

Full contour maps of the pre-multiplied spectra kxΦuu/u
2
τ in the boundary layer are

shown in Figures 7.17 and 7.18. The scales of y+, λ+ and kxΦuu/u
2
τ are kept constant

for all cases for better visual interpretation, and the corresponding mean velocity

profiles and u2+ profiles are shown below each contour map. The location of the

inner spectral peak (•) and the outer spectral peak (×) are shown for each case,

as well as the predictions Hutchins and Marusic [2007] (white +) and Mathis et al.

[2009] (white ×). The solid lines show the trends in loci of the peaks shown in

Figures 7.10 and 7.11.

Based on the results presented in this Chapter, five different wall-normal regions

can be identified in the spectral behavior:

Region I: y+ < 10,

where the near-wall structures scale as λx/y ≈ const (or t+ ≈ const without

using Taylor hypothesis);

Region II: 10 < y+ < 50,

where the near-wall structures scale as λ+x ≈ const;

Region III: 50 < y+ < C1 lnReτ + C2,

where λ+x ∼
√
y+Reτ in boundary layers and λ+x ∼ y+2/3Re

1/3
τ in pipes, and

the energy associated with SS/VLSMs is increasing;

Region IV:C1 lnReτ + C2 < y+ < 0.15Reτ ,

where λ+x ∼
√
y+Reτ in boundary layer and λ+x ∼ y+2/3Re

1/3
τ in pipes,

the energy associated with SS/VLSMs is decreasing and there is a logarithmic

behavior in variances;

Region V: y/δ > 0.15,

where LSMs (and VLSMs in pipe) scale with δ (R in pipes).
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To distinguish all the different regions in Figures 7.17 and 7.18, dashed lines show

locations of y+ = 10, y+ = 50, and y/δ = 0.15 on each plot, and the empirical

relation for the location of the outer spectral peak y+ = C1 lnReτ + C2 (with best

fitted coefficients C1 = 47 and C2 = −190) is shown as dash-dotted line.

In Region I, the energy associated with near-wall structures is increasing and also

total kinetic energy u2+ increases rapidly. The mean velocity profile is approximately

linear with y+ and this region can be associated with the linear sublayer. The inner

spectral peak location corresponds to y+ ≈ 10 and λ+ ≈ 1250 (k+x = 0.005), which can

be associated with the peak in the streamwise turbulent stress. Unfortunately only

two lowest cases can resolve the near-wall peak as in physical coordinates this peak

is located at only 100µm from the wall for lowest Reτ and this distance is decreasing

as Reτ goes up.

In Region II, the energy in the near-wall structures decreases and the wavelength

of these structures stays about constant in viscous units at λ+x ≈ 1250. In this region,

the rapid decrease of u2+ can also be seen associated with the decrease of the near-

wall peak in the energy spectra. This region is associated with the buffer layer in the

mean velocity.

At the start of Region III, at about y+ ≈ 50, two energetic peaks in the spectra

appear, with most of the energy associated with superstructures located at λx ∼
√
yδ,

and a weaker peak associated with large scale motions located at about λx ≈ 20y.

The SS peak continues to increase until about y+ ≈ C1 lnReτ + C2, where C1 ≈ 47

and C2 ≈ −190. This region in u2+ can be characterized as a level plateau for

lower Reynolds numbers and a slightly rising value for the higher cases. In the

mean velocity, an apparent self-similarity has been reached and the profile behaves

logarithmically in y+. This region could be associated with the mesolayer introduced

first by George and Castillo [1997], where the mean flow is free of viscous effects but

turbulent quantities are still affected by viscosity.
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The start of Region IV is at y+ ≈ C1 lnReτ + C2. This relation denotes the

location of the outer spectral peak associated with superstructures, and this is also

the location where there is a peak in u2+ (if there is one without spatial resolution

issues). As for the outer spectral peak, its location agrees well with previous studies

for the two lowest Reynolds numbers (which are comparable to the range studied by

Hutchins and Marusic [2007]), but as the Reynolds number increases the predictions

based on lower Reτ start to depart more and more from the current data. This is

consistent with the finding that the loci of the OSP (dashed-dotted line) varies as

ln (Reτ ), that is, a weak dependence on Reynolds number. It can be seen that the peak

location coincides with the outer peak or the end of plateau seen in total kinetic energy

u2+, and therefore marks approximately the beginning of the logarithmic behavior in

the variances. This is in contrast to Mathis et al. [2009] who suggested that the peak

is associated with the center of the log region in the mean velocity. The disagreement

is easily explained by the fact that log region in u2+ only shows up at Reynolds

numbers larger than those that were available to Mathis et al. [2009]; at lower Reτ ,

the peak does seem to be located in about the center of the logarithmic region in the

mean velocity but this may just be a coincidence due to the small extent of the log

region at lower Reynolds numbers.

Further, in Region IV, the energy associated with SS starts to diminish, but

the structures are still characterized by λx ∼
√
yδ. In this region, the streamwise

turbulent stresses start decreasing and follow a logarithmic behavior with y/δ, and

U+ ∼ ln y+ as well. This region is the inertial sublayer, where viscosity does not affect

neither the mean flow nor the turbulence (for the higher order moments, even larger

wall-normal distances might be needed for self-similarity, as discussed in Chapter 6).

Finally, in Region V, everything scales with the outer length scale δ. The SS

peak merges with the weak LSM peak, showing up as a single peak associated with

large scale structures of λx ≈ 3δ. The turbulent fluctuations diminish and the mean

187



www.manaraa.com

velocity behaves according to a Reynolds number independent wake function.

It must be noted that the limits used to define these five regions do not serve

as the best fitting limits for finding the constants for the various log-region, simply

because some blending occurs between these regions. Therefore, more conservative

limits should be used for fitting purposes, similar to the discussion by Marusic et al.

[2013], where 3Re0.5τ was chosen as a very conservative inner limit. This is also the

reason why more conservative limits were given in Chapters 3 and 5 for the mean

velocity and the u2+ log layers.

Here, spectral maps of boundary layer were shown only. In pipe flows, very similar

trends can be seen and similar regions can be identified, with only a few of differences.

First, the LSM peak varies as λx ≈ 16, and it is much stronger in magnitude. Second,

the VLSM peak (comparable to the SS peak) varies as λx y
2/3δ1/3, and the outer

spectral peak (and the change from Region III to Region IV ) is located further

from the wall, but still varying as y+ ≈ C1 lnReτ + C2, with C1 ≈ 78 and C2 ≈

−420. Finally, in Region V the peaks associated with both LSMs and VLSMs can

be observed, varying as λx ≈ 2.4δ and 14δ, respectively, compared to a single peak

in boundary layer.

7.4 Conclusions

Streamwise turbulent spectra for Reynolds numbers in the range 3, 000 . Reτ .

70, 000 were studied in pipe and boundary layer flows. In the high wavenumber (low

wavelength) region, all spectra in both flows showed an excellent collapse in Kol-

mogorov scaling with a large k
−5/3
x range, increasing with Reynolds number. This

observation confirms that the small scales associated with the dissipation are inde-

pendent of the outer flow geometry.

At intermediate wavelengths, the spectra were found to scale well with y, and at
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large wavelengths (small kx) the spectra scaled with the outer length scale δ or R.

But contrary to the predictions by Townsend [1976], no region of overlap of these

scalings was seen, and no clear k−1
x behavior. One possible explanation is that the

lack of overlap could be due to the different velocity scales in the intermediate and

large wavelength regions. A small k−1
x plateau was seen at the outer edge of the

turbulent wall region at y/δ ≈ 0.15, but it is suggested that this may just be a result

of balance between two competing peaks in the spectra.

The magnitudes and loci of the energy peaks associated with LSM and SS in

boundary layers (or VLSM in pipes) were also studied. It was found that in boundary

layers the near-wall inner spectral peak loci followed t+ ≈ 125 for y+ . 10. At that y+

location, the loci bifurcated so that the LSM peak first followed k+x ≈ 0.005 and then

kxy ≈ 0.4, in close agreement with previous findings in pipe flow. After bifurcation,

a peak associated with superstructures emerged, scaling with outer variables and

following λx+ ≈ 20(y+Re+τ )
0.5 for 50 . y+ . 0.15Reτ . Outside the logarithmic layer

above y/δ > 0.15, the peaks associated with SS and LSM merged into one peak

located at about λx ≈ 3δ. Therefore, superstructures in boundary layers are found

to have a different behavior compared to the VLSMs in pipe flow, even at these very

large Reynolds numbers.

The magnitude and location of the outer spectral peak (the peak associated with

SS) was shown to having a very slow logarithmic increase in values with Reτ . This

result suggests that the physical region containing most of the turbulent energy is get-

ting smaller and moving closer to the wall. At infinite Reynolds number, this layer

would diminish to a thin vortex sheet at the wall with a slip-flow above it, similar

to a potential flow approximation. This asymptotic behavior was previously sug-

gested based on the trends displayed by the outer peak in the turbulent fluctuations

by Pullin et al. [2013], and the spectral behavior seems to support their reasoning.

Finally, it was shown that the location of outer spectral peak location is closely re-
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lated to the outer peak in turbulent fluctuations, a result that is not obvious but

expected. Also, the constant magnitude and location of the outer spectral peak could

indicate that at these extremely high Reynolds numbers the separation between the

energy containing and dissipative ranges has become large enough to allow asymptotic

Reynolds number independent behavior of the turbulence.

Based on the behavior of peaks in the energy spectra, together with previous

results from the turbulence statistics, five distinct regions were identified: the viscous

sublayer up to y+ ≈ 10, the buffer layer 10 . y+ . 50, the mesolayer 50 . y+ .

C1 lnReτ + C2, the inertial sublayer C1 lnReτ + C2 . y+ . 0.15Reτ , and the wake

region for y/δ & 0.15. The most significant difference between pipes and boundary

layers was with respect to the start of the inertial sublayer, where constants C1 and C2

were found to be different (C1 ≈ 47 and C2 ≈ −190 for boundary layer and C1 ≈ 78

and C2 ≈ −420 for pipe).
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Chapter 8

Conclusions

The aim of this dissertation was to study and understand the behavior of wall-bounded

turbulent flows at very high Reynolds numbers. To achieve that aim, a Nano-Scale

Thermal Anemometry Probe was first developed for high resolution turbulence mea-

surements. It was shown that the performance of this novel sensor was superior to

conventional measurement technologies, allowing high quality measurements over an

unprecedented Reynolds number range.

Two canonical wall-bounded flows were studied: fully developed pipe flow and

zero pressure gradient boundary layer flow. The Reynolds number range was from

Reτ ≈ 2000 to about 100,000, and the results show that in general these two flows

behave very similarly at these high Reynolds numbers. In particular, a logarithmic

behavior in turbulent fluctuations was observed in both flows in the region where

the logarithmic behavior in mean flow exists, indicating that the scaling of turbulent

fluctuations is much more similar to the mean flow scaling than previously believed.

This logarithmic behavior is also evident in higher order even moments over the

same wall-normal region. The mean velocity data together with data from previous

studies was also examined, and extensive error analysis showed that the von Kármán’s

constant in the log-law can be determined to be κ = 0.40± 0.02.
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In addition to the behavior of the turbulence statistics, the energy distribution

for different wavelengths was studied for the longitudinal fluctuations, and again

many similarities were found between the pipe and boundary layer. Perhaps the

most intriguing observation is that the location and magnitude of the outer spectral

peak increases logarithmically in Reτ , in contrast to power law behavior previously

suggested. This logarithmic behavior was also observed in the outer peak in the

variances as well as the zero-crossing of the amplitude modulation function. This

result suggests that the wall-normal location of the most energetic motions has a

very small increase in viscous units, thereby confining the energetic motions in a

decreasing physical region near the wall with increasing Reynolds number. In the

limit of infinite Reynolds number, this layer would diminish to an infinitesimally

thin vortex sheet at the wall with a slip-flow above it, recovering a potential flow

approximation for a turbulent flow.

Five distinct wall-normal layers were identified in turbulent wall-shear flows:

• the linear sublayer up to y+ ≈ 5;

• the buffer layer 5 . y+ . 50;

• the mesolayer 50 . y+ . C1 lnReτ + C2;

• the inertial sublayer C1 lnReτ + C2 . y+ . 0.15Reτ ;

• the wake region for y/δ & 0.15

The most significant difference seen between pipes and boundary layers was with

respect to the start of the inertial sublayer, where constants C1 and C2 were found to

be different (C1 ≈ 47 and C2 ≈ −190 for boundary layer and C1 ≈ 78 and C2 ≈ −420

for pipe). All these regions are indicated in Figure 8.1, together with some other

characteristics indicative of each layer.
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Figure 8.1: Schematic showing various regions in boundary layer and pipe flow. Behavior of mean velocity U , turbulent
fluctuations u+ and energy spectrum kxΦuu are also indicated in corresponding regions. All regions apply for pipes and
boundary layers, with exceptions indicated in color. Constants C1 and C2 are different (C1 ≈ 47 and C2 ≈ −190 for boundary
layer and C1 ≈ 78 and C2 ≈ −420 for pipe).

193



www.manaraa.com

Figure 8.2: Schematic of possible designs of cross-NSTAP.

Our observations suggest that our experiments have finally reached a sufficiently

high Reynolds numbers (Reτ ≈ 10, 000) where the scale separation between the en-

ergetic and dissipative scales is large enough for self-similar behavior of the flow.

8.1 Future Work

In order to check and confirm that the observations and trends seen here truly repre-

sent the limit of infinite Reynolds number, it may be necessary to study even higher

Reynolds numbers. But perhaps much more important at this point in turbulence

research is to concentrate on the precision of the data. Novel technologies evolve

quickly and experimentalists should take advantages of these new emerging possibil-

ities. Instead of measuring at larger Reynolds numbers, it is important to measure

more precisely, and pay attention to small details, which can be of high importance

in the overall picture. This includes more precise estimation of the wall shear stress,

parameters influencing the estimation of the von Karman constant and overcoming

limitations of end-conduction, spatial and temporal filtering, calibration precision and

other parameters affecting the measurement of turbulent fluctuations, just to name

a few.

Scaling the streamwise turbulence quantities is an important endeavor, but in or-

der to fully describe turbulent wall-bounded flows and develop appropriate models,

194



www.manaraa.com

understanding the behavior of the wall-normal and spanwise components of turbu-

lence is also needed. The nano-scale sensor developed in this work is a sound basis for

developing more complex sensors with multiple sensing elements that could resolve

multiple velocity components instantaneously (a sketch of two possible designs are

shown in Figure 8.2). With a two-sensor NSTAP, u and v or u and w instantaneous

velocities could be measured, and so a full Reynolds stress tensor can be measured

with relatively good spatial and temporal resolution.

Additionally, the small size and flexibility in design of these sensors makes them

ideal for temperature and humidity measurements with good temporal and spatial

resolution. By combining instantaneous velocity and scalar measurements, the tur-

bulent temperature and humidity fluxes could be studied, in order to gain a better

understanding of the transport of mass, momentum, and energy in wall-bounded

flows. This is particularly important for atmospheric boundary layers, as well as for

the entire convective heat transfer community.
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S. Hoyas and J. Jiménez. Scaling of the velocity fluctuations in turbulent channels

up to Reτ = 2003. Phys. Fluids, 18:011702, 2006.

G. D. Huffman and P. Bradshaw. A note on von Kármán’s constant in low Reynolds
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J. M. Österlund, A. V. Johansson, H. M. Nagib, and M. H. Hites. A note on the

overlap region in turbulent boundary layers. Phys. Fluids, 12(1):1–4, 2000.

V. C. Patel. Calibration of the Preston tube and limitations on its use in pressure

gradients. J. Fluid Mech., 23:185–208, 1965.

A. E. Perry and C. J. Abell. Scaling laws for pipe-flow turbulence. J. Fluid Mech.,

67:257–271, 1975.

A. E. Perry and M. S. Chong. On the mechanism of wall turbulence. J. Fluid Mech.,

119:173–217, 1982.

A. E. Perry and J. D. Li. Experimental support for the attached-eddy hypothesis

in zero-pressure- gradient turbulent boundary layers. J. Fluid Mech., 218:405–438,

1990.

A. E. Perry and J. F. Morrison. A study of the constant-temperature hot-wire

anemometer. Journal of Fluid Mechanics, 47(3):577–599, 1971.

A. E. Perry, A. J. Smits, and M. S. Chong. The effects of certain low frequency

phenomena on the calibration of hot wires. Journal of Fluid Mechanics, 90:3:415–

431, 1979.

A. E. Perry, S. M. Henbest, and M. S. Chong. A theoretical and experimental study

of wall turbulence. J. Fluid Mech., 165:163–199, 1986.

A. E. Perry, S. Hafez, and M. S. Chong. A possible reinterpretation of the Princeton

superpipe data. J. Fluid Mech., 439:395–401, 2001.

206



www.manaraa.com

A.E. Perry and C.J. Abell. Asymptotic similarity of turbulence structures in smooth-

and rough-walled pipes. J. Fluid Mech., 79:785–799, 1977.

U. Piomelli and E. Balaras. Wall-layer models for large-eddy simulations. Annu. Rev.

Fluid Mech, 34:34974, 2002.

S. Pirozzoli and M. Bernardini. Probing high-reynolds-number effects in numerical

boundary layers. Physics of Fluids, 25:021704, 2013.

S. B. Pope. Turbulent Flows. CUP, 2000.

L. Prandtl. Bericht ber untersuchungen zur ausgebildeten turbulenz. Z. Angew. Math.

Mech, 5(2):136–139, 1925.

D. I. Pullin, M. Inoue, and N. Saito. On the asymptotic state of high reynolds number,

smooth-wall turbulent flows. Physics of Fluids, 25(1):105116, 2013.

M. P. Rao, M. F. Aimi, and N. C. MacDonald. Single-mask, three-dimensional micro-

fabrication of high-aspect-ratio structures in bulk silicon using reactive ion etching

lag and sacrificial oxidation. App. Phys. Lett., 85-25:6281–6283, 2004.

M. R. Raupach, R. A. Antonia, and S. Rjagopalan. Rough-wall turbulent boundary

layers. Appl. Mech. Rev., 44:1–25, 1991.

L. F. Richardson. Weather prediction by numerical process. Cambridge University

Press, Cambridge, UK, 1922.

S. K. Robinson. Coherent motions in turbulent boundary layers. Annu. Rev. Fluid

Mech., 23:601–639, 1991.

B. J. Rosenberg, M. Hultmark, M. Vallikivi, S. C. C. Bailey, and A. J. Smits. Turbu-

lence spectra in smooth- and rough-wall pipe flow at extreme Reynolds numbers.

Journal of Fluid Mechanics, 731:46–63, August 2013.

207



www.manaraa.com

H. Schlichting and K. Gersten. Boundary Layer Theory. Springer-Verlag, New York,

NY, 8th edition, 2000.

M. P. Schultz and K. A. Flack. Reynolds-number scaling of turbulent channel flow.

Phys. Fluids, 25:025104, 2013.

M. A. Shockling, J. J. Allen, and A. J. Smits. Roughness effects in turbulent pipe

flow. J. Fluid Mech., 564:267–285, 2006.

J. Sillero, J. Jiménez, R. D. Moser, and N. P. Malaya. Direct simulation of a zero-

pressure-gradient turbulent boundary layer up to reθ= 6650. Journal of Physics:

Conference Series, 318:022023, 2011.

A. J. Smits and I. Marusic. Wall-bounded turbulence. Physics Today, pages 25–30,

September 2013.

A. J. Smits, B. J. McKeon, and I. Marusic. High Reynolds number wall turbulence.

Annu. Rev. Fluid Mech., 43:353–375, 2011a.

A. J. Smits, J. Monty, M. Hultmark, S. C. C. Bailey, M. Hutchins, and I. Marusic.

Spatial resolution correction for turbulence measurements. J. Fluid Mech., 676:

41–53, 2011b.

C. J. Swanson, B. Julian, G. G. Ihas, and Donnelly R. J. Pipe flow measurements

over a wide range of Reynolds numbers using liquid helium and various gases. J.

Fluid Mech., 461:51–60, 2002.

S. Tavoularis. Measurement in Fluid Mechanics. Cambridge University Press, 2005.

G. I. Taylor. The spectrum of turbulence. Proc. R. Soc. Lond., 164(919):476–490,

1938.

H. Tennekes and J. L. Lumley. A First Course in Turbulence. The MIT Press,

Cambridge, Massachusetts, 1972.

208



www.manaraa.com

A. A. Townsend. The Structure of Turbulent Shear Flow. CUP, Cambridge, UK,

1976.

C. Tropea, A. Yarin, and J. Foss, editors. Springer Handbook of Experimental Fluid

Mechanics. Springer, 2007.

Y. Tsuji, B. Lindgren, and A. V. Johansson. Self-similar profile of probability density

functions in zero-pressure gradient turbulent boundary layers. Fluid Dyn. Res., 37:

293–316, 2005.

U.S. Energy Information Administration. Annual energy outlook 2014, early release.

EIA, 2013.

M. Vallikivi. Turbulence measurements with a nano-scale thermal anemometry probe.

Master’s thesis, Chalmers University of Technology, Sweden, 2010.

M. Vallikivi and A. J. Smits. Fabrication and characterization of a novel nano-scale

thermal anemometry probe. J. of MEMS, 2014. accepted.

M. Vallikivi, M. Hultmark, S. C. C. Bailey, and A. J. Smits. Turbulence measurements

in pipe flow using a nano-scale thermal anemometry probe. EXPFL, 51:1521–1527,

2011.
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